Matching Items (10)
Filtering by

Clear all filters

136661-Thumbnail Image.png
Description
A series of mitochondria targeting probes was synthesized for the purpose of exploring the feasibility of a mitochondria targeting fluorescent sensor. Of the probes, the probe with a two carbon spacer showed the best co-localization from staining with the established MitoTracker Red® FM, indicating a potential development of the probe

A series of mitochondria targeting probes was synthesized for the purpose of exploring the feasibility of a mitochondria targeting fluorescent sensor. Of the probes, the probe with a two carbon spacer showed the best co-localization from staining with the established MitoTracker Red® FM, indicating a potential development of the probe into mitochondria targeting sensor. However, cytotoxicity was observed for the probe with a six carbon spacer. Three additional mitochondria targeting fluorescent probes of longer spacer groups were synthesized, but the cytotoxicity was not observed to be as high as that of the probe with a two carbon spacer. The cytotoxicity was characterized to be that of caspase dependent cell death. To screen for a possible effect on apoptosis due to the mitochondrial probe, three fluorescent fusion proteins binding the anti-apoptotic proteins were designed and expressed. Each purified fusion protein was then incubated with the cytotoxic mitochondrial probe, and the mixture was isolated by running an affinity column. The fluorescence analysis of eluted fractions showed preliminary data of possible interaction between the protein and the mitochondrial probe.
ContributorsLee, Fred (Author) / Meldrum, Deirdre R. (Thesis director) / Tian, Yanqing (Committee member) / Zhang, Liqiang (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2014-12
136317-Thumbnail Image.png
Description
Transient Receptor Potential (TRP) channels are a diverse class of ion channels notable as polymodal sensors. TRPM8 is a TRP channel implicated in cold sensation, nociception, and a variety of human diseases, including obesity and cancer. Despite sustained interest in TRPM8 since its discovery in 2001, many of the molecular

Transient Receptor Potential (TRP) channels are a diverse class of ion channels notable as polymodal sensors. TRPM8 is a TRP channel implicated in cold sensation, nociception, and a variety of human diseases, including obesity and cancer. Despite sustained interest in TRPM8 since its discovery in 2001, many of the molecular mechanisms that underlie function are not yet clear. Knowledge of these properties could have implications for medicine and physiological understanding of sensation and signaling. Structures of TRP channels have proven challenging to solve, but recent Cryoelectron microscopy (Cryo-EM) structures of TRPV1 provide a basis for homology-based modeling of TRP channel structures and interactions. I present an ensemble of 11,000 Rosetta computational homology models of TRPM8 based on the recent Cryo-EM apo structure of TRPV1 (PDB code:3J5P). Site-directed mutagenesis has provided clues about which residues are most essential for modulatory ligands to bind, so the models presented provide a platform to investigate the structural basis of TRPM8 ligand modulation complementary to existing functional and structural information. Menthol and icilin appear to interact with interfacial residues in the sensor domain (S1-S4). One consensus feature of these sites is the presence of local contacts to the S4 helix, suggesting this helix may be mechanistically involved with the opening of the pore. Phosphatidylinositol 4,5-bisphosphate (PIP2)has long been known to interact with the C-terminus of TRPM8, and some of the homology models contain plausible binding pockets where PIP2 can come into contact with charged residues known to be essential for PIP2 modulation. Future in silico binding experiments could provide testable hypothesis for in vitro structural studies, and experimental data (e.g. distance constraints from electron paramagnetic resonance spectroscopy [EPR]) could further refine the models.
ContributorsHelsell, Cole Vincent Maher (Author) / Van Horn, Wade (Thesis director) / Wang, Xu (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2015-05
136377-Thumbnail Image.png
Description
In this thesis, glycan nodes, the basic subunits of complex biological sugars, were studied to determine the reproducibility of gas chromatography-mass spectrometry (GC/MS) based methylation analysis of whole blood plasma by normalization using an internal standard of heavy permethylated glycans. Glycans are complex biological sugars that have a variety of

In this thesis, glycan nodes, the basic subunits of complex biological sugars, were studied to determine the reproducibility of gas chromatography-mass spectrometry (GC/MS) based methylation analysis of whole blood plasma by normalization using an internal standard of heavy permethylated glycans. Glycans are complex biological sugars that have a variety of applications in the human body and will display aberrant compositions when produced by cancerous cells. Thus an assay to determine their composition can be used as a diagnostic tool. It was shown that the assay may have potential use, but needs further refinement to become an improvement over current methods by analyzing the results of ratio-determination and replicate experiments.
ContributorsMiyasaki, Tyler Takeo (Author) / Borges, Chad (Thesis director) / Van Horn, Wade (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / Chemical Engineering Program (Contributor)
Created2015-05
136133-Thumbnail Image.png
Description
Currently in synthetic biology only the Las, Lux, and Rhl quorum sensing pathways have been adapted for broad engineering use. Quorum sensing allows a means of cell to cell communication in which a designated sender cell produces quorum sensing molecules that modify gene expression of a designated receiver cell. While

Currently in synthetic biology only the Las, Lux, and Rhl quorum sensing pathways have been adapted for broad engineering use. Quorum sensing allows a means of cell to cell communication in which a designated sender cell produces quorum sensing molecules that modify gene expression of a designated receiver cell. While useful, these three quorum sensing pathways exhibit a nontrivial level of crosstalk, hindering robust engineering and leading to unexpected effects in a given design. To address the lack of orthogonality among these three quorum sensing pathways, previous scientists have attempted to perform directed evolution on components of the quorum sensing pathway. While a powerful tool, directed evolution is limited by the subspace that is defined by the protein. For this reason, we take an evolutionary biology approach to identify new orthogonal quorum sensing networks and test these networks for cross-talk with currently-used networks. By charting characteristics of acyl homoserine lactone (AHL) molecules used across quorum sensing pathways in nature, we have identified favorable candidate pathways likely to display orthogonality. These include Aub, Bja, Bra, Cer, Esa, Las, Lux, Rhl, Rpa, and Sin, which we have begun constructing and testing. Our synthetic circuits express GFP in response to a quorum sensing molecule, allowing quantitative measurement of orthogonality between pairs. By determining orthogonal quorum sensing pairs, we hope to identify and adapt novel quorum sensing pathways for robust use in higher-order genetic circuits.
ContributorsMuller, Ryan (Author) / Haynes, Karmella (Thesis director) / Wang, Xiao (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of Life Sciences (Contributor)
Created2015-05
136136-Thumbnail Image.png
Description
Three populations of experimentally evolved Drosophila melanogaster populations made up of high temperature (H, constant 25 ᵒC), low temperature (C, constant 16 ᵒC) and temporal homogeneity (T, environment changes between 16 ᵒC and 25 ᵒC) were prepared and assayed to determine difference in citrate synthase activity. Between the three groups,

Three populations of experimentally evolved Drosophila melanogaster populations made up of high temperature (H, constant 25 ᵒC), low temperature (C, constant 16 ᵒC) and temporal homogeneity (T, environment changes between 16 ᵒC and 25 ᵒC) were prepared and assayed to determine difference in citrate synthase activity. Between the three groups, the results were inconclusive: the resulting reaction rates in units of nmol min-1mgfly-1 were 81.8 + 20.6, 101 + 15.6, and 96.9 + 25.2 for the hot (H), cold (C), and temporally homogeneous (T) groups, respectively. We conclude that the high associated variability was due to a lack of control regarding the collection time of the experimentally evolved Drosophila.
ContributorsBelohlavek, David (Author) / Angilletta, Michael (Thesis director) / Francisco, Wilson (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2015-05
137273-Thumbnail Image.png
Description
Protein AMPylation is a recently discovered and relatively unstudied post-translational modification (PTM). AMPylation has previously been shown to play an important role in metabolic regulation and host pathogenesis in bacteria, but the recent identification of potential AMPylators across many species in every domain of life has supported the possibility that

Protein AMPylation is a recently discovered and relatively unstudied post-translational modification (PTM). AMPylation has previously been shown to play an important role in metabolic regulation and host pathogenesis in bacteria, but the recent identification of potential AMPylators across many species in every domain of life has supported the possibility that AMPylation could be a more fundamental and physiologically significant regulatory PTM. For the first time, we characterized the auto-AMPylation capability of the human protein SOS1 through in vitro AMPylation experiments using full-length protein and whole-domain truncation mutants. We found that SOS1 can become AMPylated at a tyrosine residue possibly within the Cdc25 domain of the protein, the Dbl homology domain is vital for efficient auto-AMPylation activity, and the C-terminal proline-rich domain exhibits a complex regulatory function. The proline-rich domain alone also appears to be capable of catalyzing a separate, unidentified covalent self-modification using a fluorescent ATP analogue. Finally, SOS1 was shown to be capable of catalyzing the AMPylation of two endogenous human protein substrates: a ubiquitous, unidentified protein of ~49kDa and another breast-cancer specific, unidentified protein of ~28kDa.
ContributorsOber-Reynolds, Benjamin John (Author) / LaBaer, Joshua (Thesis director) / Borges, Chad (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of Life Sciences (Contributor)
Created2014-05
137546-Thumbnail Image.png
Description
In vitro measurements of cellular respiration have proven to be key biomarkers for the early onset of tumor formation in certain pathological mechanisms.1 The examination of isolated single cells has shown promise in predicting the onset of cancerous growth much earlier than current methods allow.2 Specifically, measurements of the oxygen

In vitro measurements of cellular respiration have proven to be key biomarkers for the early onset of tumor formation in certain pathological mechanisms.1 The examination of isolated single cells has shown promise in predicting the onset of cancerous growth much earlier than current methods allow.2 Specifically, measurements of the oxygen consumption rates of precancerous cells have elucidated outliers which predict the early onset of esophageal cancer.2 Single cell profiling can fit in to current pathology studies and can serve as a step along the way, much like PCR or gel assays, in detecting biomarkers earlier than current clinical methods.3 Measurement of these single cell metabolic rates is currently limited to 25 cells per experiment. It is the aim of this project to increase throughput from 25 cells to 225 cells per experiment via the implementation of new hardware and software which fit with current methods to allow the same experimental structure. Successful implementation of such methods will allow for more rapid and efficient data collection, facilitating quantitative results and nine times the yield from the same experimental manpower and funding. This document focuses on the implementation ultra high density (UHD) hardware consisting of a pneumatic molar design, angular adjustment features and a mechanical Z-stage. These components have produced the most encouraging results thus far and are the key changes in transitioning to higher throughput experiments.
ContributorsUeberroth, Benjamin Edward (Author) / Kelbauskas, Laimonas (Thesis director) / Ashili, Shashanka (Committee member) / Myers, Jakrey (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of Life Sciences (Contributor)
Created2013-05
136921-Thumbnail Image.png
Description
Photosynthesis is a critical process that fixes the carbon utilized in cellular respiration. In higher plants, the immutans gene codes for a protein that is both involved in carotenoid biosynthesis and plastoquinol oxidation (Carol et al 1999, Josse et al 2003). This plastoquinol terminal oxidase (PTOX) is of great interest

Photosynthesis is a critical process that fixes the carbon utilized in cellular respiration. In higher plants, the immutans gene codes for a protein that is both involved in carotenoid biosynthesis and plastoquinol oxidation (Carol et al 1999, Josse et al 2003). This plastoquinol terminal oxidase (PTOX) is of great interest in understanding electron flow in the plastoquinol pool. In order to characterize this PTOX, polyclonal antibodies were developed. Expression of Synechococcus WH8102 PTOX in E. coli provided a useful means to harvest the protein required for antibody production. Once developed, the antibody was tested for limit of concentration, effectiveness in whole cell lysate, and overall specificity. The antibody raised against PTOX was able to detect as low as 10 pg of PTOX in SDS-PAGE, and could detect PTOX extracted from lysed Synechococcus WH8102. The production of this antibody could determine the localization of the PTOX in Synechococcus.
ContributorsKhan, Mohammad Iqbal (Author) / Moore, Thomas (Thesis director) / Redding, Kevin (Committee member) / Roberson, Robert (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of Life Sciences (Contributor)
Created2014-05
136872-Thumbnail Image.png
Description
Quercetin 2,3-dioxygenase from Bacillus subtilis has been identified and characterized as the first known prokaryotic quercetinase. This enzyme catalyzes the cleavage of the O-heteroaromatic ring of the flavonol quercetin to the corresponding depside and carbon monoxide. The first quercetinase was characterized from a species of Aspergillus genus, and was found

Quercetin 2,3-dioxygenase from Bacillus subtilis has been identified and characterized as the first known prokaryotic quercetinase. This enzyme catalyzes the cleavage of the O-heteroaromatic ring of the flavonol quercetin to the corresponding depside and carbon monoxide. The first quercetinase was characterized from a species of Aspergillus genus, and was found to contain one Cu2+ per subunit. For many years, it was thought that the B. subtilis quercetinase contained two Fe2+ ions per subunit; however, it has since been discovered that Mn2+ is a much more likely cofactor. Studies of overexpressed bacterial enzyme in E. coli indicated that this enzyme may be active with other metal ions (e.g. Co2+); however, the production of enzyme with full metal incorporation has only been possible with Mn2+. This study explores the notion that metal manipulation after translation, by partially unfolding the enzyme, chelating the metal ions, and then refolding the protein in the presence of an excess of divalent metal ions, could generate enzyme with full metal occupancy. The protocols presented here included testing for activity after incubating purified quercetinase with EDTA, DDTC, imidazole and GndHCl. It was found that the metal chelators had little to no effect on quercetinase activity. Imidazole did appear to inhibit the enzyme at concentrations in the millimolar range. In addition, the quercetinase was denatured in GndHCl at concentrations above 1 M. Recovering an active enzyme after partial or complete unfolding proved difficult, if not impossible.
ContributorsKrojanker, Elan Daniel (Author) / Francisco, Wilson (Thesis director) / Allen, James P. (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2014-05
Description
With uses in fields such as medicine, agriculture, and biotechnology, halogenases are useful enzymes in nature which add or substitute halogens onto other molecules. By doing so, they become necessary for biosynthesis and cross-coupling reactions. Halogenases can be classified by three main types of mechanisms: nucleophilic, radical, and electrophilic. From

With uses in fields such as medicine, agriculture, and biotechnology, halogenases are useful enzymes in nature which add or substitute halogens onto other molecules. By doing so, they become necessary for biosynthesis and cross-coupling reactions. Halogenases can be classified by three main types of mechanisms: nucleophilic, radical, and electrophilic. From there, they can be further broken down by the halogen involved, the substrate needed, other proteins used, or molecules generated. A notable example is PrnA which is a tryptophan-7 halogenase that falls under the flavin-dependent definition with an electrophilic mechanism. Historically, research on these enzymes was slow until the use of bioinformatics rapidly accelerated discoveries to the point where halogenases like VirX1 can be identified from viruses. By reviewing the literature available on halogenase since their first analysis, a better understanding of their functions can be obtained. Also, with the application of bioinformatics, a phylogenetic analysis on the halogenases present in cyanobacteria can be conducted and compared.
ContributorsUsmani, Hibah (Author) / Zhu, Qiyun (Thesis director) / Neilan, Brett (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / School of Life Sciences (Contributor)
Created2024-05