Matching Items (14)
Filtering by

Clear all filters

152672-Thumbnail Image.png
Description
Photosynthesis is the primary source of energy for most living organisms. Light harvesting complexes (LHC) play a vital role in harvesting sunlight and passing it on to the protein complexes of the electron transfer chain which create the electrochemical potential across the membrane which drives ATP synthesis. phycobilisomes (PBS) are

Photosynthesis is the primary source of energy for most living organisms. Light harvesting complexes (LHC) play a vital role in harvesting sunlight and passing it on to the protein complexes of the electron transfer chain which create the electrochemical potential across the membrane which drives ATP synthesis. phycobilisomes (PBS) are the most important LHCs in cyanobacteria. PBS is a complex of three light harvesting proteins: phycoerythrin (PE), phycocyanin (PC) and allophycocyanin (APC). This work has been done on a newly discovered cyanobacterium called Leptolyngbya Heron Island (L.HI). This study has three important goals: 1) Sequencing, assembly and annotation of the L.HI genome - Since this is a newly discovered cyanobacterium, its genome was not previously elucidated. Illumina sequencing, a type of next generation sequencing (NGS) technology was employed to sequence the genome. Unfortunately, the natural isolate contained other contaminating and potentially symbiotic bacterial populations. A novel bioinformatics strategy for separating DNA from contaminating bacterial populations from that of L.HI was devised which involves a combination of tetranucleotide frequency, %(G+C), BLAST analysis and gene annotation. 2) Structural elucidation of phycoerythrin - Phycoerythrin is the most important protein in the PBS assembly because it is one of the few light harvesting proteins which absorbs green light. The protein was crystallized and its structure solved to a resolution of 2Å. This protein contains two chemically distinct types of chromophores: phycourobilin and phycoerythrobilin. Energy transfer calculations indicate that there is unidirectional flow of energy from phycourobilin to phycoerythrobilin. Energy transfer time constants using Forster energy transfer theory have been found to be consistent with experimental data available in literature. 3) Effect of chromatic acclimation on photosystems - Chromatic acclimation is a phenomenon in which an organism modulates the ratio of PE/PC with change in light conditions. Our investigation in case of L.HI has revealed that the PE is expressed more in green light than PC in red light. This leads to unequal harvesting of light in these two states. Therefore, photosystem II expression is increased in red-light acclimatized cells coupled with an increase in number of PBS.
ContributorsPaul, Robin (Author) / Fromme, Petra (Thesis advisor) / Ros, Alexandra (Committee member) / Roberson, Robert (Committee member) / Arizona State University (Publisher)
Created2014
149885-Thumbnail Image.png
Description
The cyanobacterium Synechocystis sp. PCC 6803 performs oxygenic photosynthesis. Light energy conversion in photosynthesis takes place in photosystem I (PSI) and photosystem II (PSII) that contain chlorophyll, which absorbs light energy that is utilized as a driving force for photosynthesis. However, excess light energy may lead to formation of reactive

The cyanobacterium Synechocystis sp. PCC 6803 performs oxygenic photosynthesis. Light energy conversion in photosynthesis takes place in photosystem I (PSI) and photosystem II (PSII) that contain chlorophyll, which absorbs light energy that is utilized as a driving force for photosynthesis. However, excess light energy may lead to formation of reactive oxygen species that cause damage to photosynthetic complexes, which subsequently need repair or replacement. To gain insight in the degradation/biogenesis dynamics of the photosystems, the lifetimes of photosynthetic proteins and chlorophyll were determined by a combined stable-isotope (15N) and mass spectrometry method. The lifetimes of PSII and PSI proteins ranged from 1-33 and 30-75 hours, respectively. Interestingly, chlorophyll had longer lifetimes than the chlorophyll-binding proteins in these photosystems. Therefore, photosynthetic proteins turn over and are replaced independently from each other, and chlorophyll is recycled from the damaged chlorophyll-binding proteins. In Synechocystis, there are five small Cab-like proteins (SCPs: ScpA-E) that share chlorophyll a/b-binding motifs with LHC proteins in plants. SCPs appear to transiently bind chlorophyll and to regulate chlorophyll biosynthesis. In this study, the association of ScpB, ScpC, and ScpD with damaged and repaired PSII was demonstrated. Moreover, in a mutant lacking SCPs, most PSII protein lifetimes were unaffected but the lifetime of chlorophyll was decreased, and one of the nascent PSII complexes was missing. SCPs appear to bind PSII chlorophyll while PSII is repaired, and SCPs stabilize nascent PSII complexes. Furthermore, aminolevulinic acid biosynthesis, an early step of chlorophyll biosynthesis, was impaired in the absence of SCPs, so that the amount of chlorophyll in the cells was reduced. Finally, a deletion mutation was introduced into the sll1906 gene, encoding a member of the putative bacteriochlorophyll delivery (BCD) protein family. The Sll1906 sequence contains possible chlorophyll-binding sites, and its homolog in purple bacteria functions in proper assembly of light-harvesting complexes. However, the sll1906 deletion did not affect chlorophyll degradation/biosynthesis and photosystem assembly. Other (parallel) pathways may exist that may fully compensate for the lack of Sll1906. This study has highlighted the dynamics of photosynthetic complexes in their biogenesis and turnover and the coordination between synthesis of chlorophyll and photosynthetic proteins.
ContributorsYao, Cheng I Daniel (Author) / Vermaas, Wim (Thesis advisor) / Fromme, Petra (Committee member) / Roberson, Robert (Committee member) / Webber, Andrew (Committee member) / Arizona State University (Publisher)
Created2011
157372-Thumbnail Image.png
Description
Microscopic algae have been investigated extensively by researchers for decades for their ability to bioremediate wastewater and flue gas while producing valuable biomass for use as feed, fuel, fertilizer, nutraceutical, and other specialty products. Reports of the exciting commercial potential of this diverse group of organisms started appearing in

Microscopic algae have been investigated extensively by researchers for decades for their ability to bioremediate wastewater and flue gas while producing valuable biomass for use as feed, fuel, fertilizer, nutraceutical, and other specialty products. Reports of the exciting commercial potential of this diverse group of organisms started appearing in the literature as early as the 1940’s. However, nearly 80 years later, relatively few successful commercial microalgae installations exist and algae have not yet reached agricultural commodity status. This dissertation examines three major bottlenecks to commercial microalgae production including lack of an efficient and economical cultivation strategy, poor management of volatile waste nutrients, and costly harvesting and post processing strategies. A chapter is devoted to each of these three areas to gain a better understanding of each bottleneck as well as strategies for overcoming them.

The first chapter demonstrates the capability of two strains of Scenedesmus acutus to grow in ultra-high-density (>10 g L-1 dry weight biomass) cultures in flat panel photobioreactors for year-round production in the desert Southwest with record volumetric biomass productivity. The advantages and efficiency of high-density cultivation are discussed. The second chapter focuses on uptake and utilization of the volatile components of wastewater: ammonia and carbon dioxide. Scenedesmus acutus was cultured on wastewater from both municipal and agricultural origin and was shown to perform significantly better on flue gas as compared to commercial grade CO2 and just as well on waste nutrients as the commonly used BG-11 laboratory culture media, all while producing up to 50% lipids of the dry weight biomass suitable for use in biodiesel. The third chapter evaluates the feasibility of using gravity sedimentation for the harvesting of the difficult-to-separate Scenedesmus acutus green algae biomass followed by microfluidization to disrupt the cells. Lipid-extracted biomass was then studied as a fertilizer for plants and shown to have similar performance to a commercially available 4-6-6 fertilizer. Based on the work from these three chapters, a summary of modifications are suggested to help current and future microalgae companies be more competitive in the marketplace with traditional agricultural commodities.
ContributorsWray, Joshua (Author) / Dempster, Thomas (Thesis advisor) / Roberson, Robert (Thesis advisor) / Bingham, Scott (Committee member) / Neuer, Susanne (Committee member) / Arizona State University (Publisher)
Created2019
136661-Thumbnail Image.png
Description
A series of mitochondria targeting probes was synthesized for the purpose of exploring the feasibility of a mitochondria targeting fluorescent sensor. Of the probes, the probe with a two carbon spacer showed the best co-localization from staining with the established MitoTracker Red® FM, indicating a potential development of the probe

A series of mitochondria targeting probes was synthesized for the purpose of exploring the feasibility of a mitochondria targeting fluorescent sensor. Of the probes, the probe with a two carbon spacer showed the best co-localization from staining with the established MitoTracker Red® FM, indicating a potential development of the probe into mitochondria targeting sensor. However, cytotoxicity was observed for the probe with a six carbon spacer. Three additional mitochondria targeting fluorescent probes of longer spacer groups were synthesized, but the cytotoxicity was not observed to be as high as that of the probe with a two carbon spacer. The cytotoxicity was characterized to be that of caspase dependent cell death. To screen for a possible effect on apoptosis due to the mitochondrial probe, three fluorescent fusion proteins binding the anti-apoptotic proteins were designed and expressed. Each purified fusion protein was then incubated with the cytotoxic mitochondrial probe, and the mixture was isolated by running an affinity column. The fluorescence analysis of eluted fractions showed preliminary data of possible interaction between the protein and the mitochondrial probe.
ContributorsLee, Fred (Author) / Meldrum, Deirdre R. (Thesis director) / Tian, Yanqing (Committee member) / Zhang, Liqiang (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2014-12
136317-Thumbnail Image.png
Description
Transient Receptor Potential (TRP) channels are a diverse class of ion channels notable as polymodal sensors. TRPM8 is a TRP channel implicated in cold sensation, nociception, and a variety of human diseases, including obesity and cancer. Despite sustained interest in TRPM8 since its discovery in 2001, many of the molecular

Transient Receptor Potential (TRP) channels are a diverse class of ion channels notable as polymodal sensors. TRPM8 is a TRP channel implicated in cold sensation, nociception, and a variety of human diseases, including obesity and cancer. Despite sustained interest in TRPM8 since its discovery in 2001, many of the molecular mechanisms that underlie function are not yet clear. Knowledge of these properties could have implications for medicine and physiological understanding of sensation and signaling. Structures of TRP channels have proven challenging to solve, but recent Cryoelectron microscopy (Cryo-EM) structures of TRPV1 provide a basis for homology-based modeling of TRP channel structures and interactions. I present an ensemble of 11,000 Rosetta computational homology models of TRPM8 based on the recent Cryo-EM apo structure of TRPV1 (PDB code:3J5P). Site-directed mutagenesis has provided clues about which residues are most essential for modulatory ligands to bind, so the models presented provide a platform to investigate the structural basis of TRPM8 ligand modulation complementary to existing functional and structural information. Menthol and icilin appear to interact with interfacial residues in the sensor domain (S1-S4). One consensus feature of these sites is the presence of local contacts to the S4 helix, suggesting this helix may be mechanistically involved with the opening of the pore. Phosphatidylinositol 4,5-bisphosphate (PIP2)has long been known to interact with the C-terminus of TRPM8, and some of the homology models contain plausible binding pockets where PIP2 can come into contact with charged residues known to be essential for PIP2 modulation. Future in silico binding experiments could provide testable hypothesis for in vitro structural studies, and experimental data (e.g. distance constraints from electron paramagnetic resonance spectroscopy [EPR]) could further refine the models.
ContributorsHelsell, Cole Vincent Maher (Author) / Van Horn, Wade (Thesis director) / Wang, Xu (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2015-05
136377-Thumbnail Image.png
Description
In this thesis, glycan nodes, the basic subunits of complex biological sugars, were studied to determine the reproducibility of gas chromatography-mass spectrometry (GC/MS) based methylation analysis of whole blood plasma by normalization using an internal standard of heavy permethylated glycans. Glycans are complex biological sugars that have a variety of

In this thesis, glycan nodes, the basic subunits of complex biological sugars, were studied to determine the reproducibility of gas chromatography-mass spectrometry (GC/MS) based methylation analysis of whole blood plasma by normalization using an internal standard of heavy permethylated glycans. Glycans are complex biological sugars that have a variety of applications in the human body and will display aberrant compositions when produced by cancerous cells. Thus an assay to determine their composition can be used as a diagnostic tool. It was shown that the assay may have potential use, but needs further refinement to become an improvement over current methods by analyzing the results of ratio-determination and replicate experiments.
ContributorsMiyasaki, Tyler Takeo (Author) / Borges, Chad (Thesis director) / Van Horn, Wade (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / Chemical Engineering Program (Contributor)
Created2015-05
136136-Thumbnail Image.png
Description
Three populations of experimentally evolved Drosophila melanogaster populations made up of high temperature (H, constant 25 ᵒC), low temperature (C, constant 16 ᵒC) and temporal homogeneity (T, environment changes between 16 ᵒC and 25 ᵒC) were prepared and assayed to determine difference in citrate synthase activity. Between the three groups,

Three populations of experimentally evolved Drosophila melanogaster populations made up of high temperature (H, constant 25 ᵒC), low temperature (C, constant 16 ᵒC) and temporal homogeneity (T, environment changes between 16 ᵒC and 25 ᵒC) were prepared and assayed to determine difference in citrate synthase activity. Between the three groups, the results were inconclusive: the resulting reaction rates in units of nmol min-1mgfly-1 were 81.8 + 20.6, 101 + 15.6, and 96.9 + 25.2 for the hot (H), cold (C), and temporally homogeneous (T) groups, respectively. We conclude that the high associated variability was due to a lack of control regarding the collection time of the experimentally evolved Drosophila.
ContributorsBelohlavek, David (Author) / Angilletta, Michael (Thesis director) / Francisco, Wilson (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2015-05
137273-Thumbnail Image.png
Description
Protein AMPylation is a recently discovered and relatively unstudied post-translational modification (PTM). AMPylation has previously been shown to play an important role in metabolic regulation and host pathogenesis in bacteria, but the recent identification of potential AMPylators across many species in every domain of life has supported the possibility that

Protein AMPylation is a recently discovered and relatively unstudied post-translational modification (PTM). AMPylation has previously been shown to play an important role in metabolic regulation and host pathogenesis in bacteria, but the recent identification of potential AMPylators across many species in every domain of life has supported the possibility that AMPylation could be a more fundamental and physiologically significant regulatory PTM. For the first time, we characterized the auto-AMPylation capability of the human protein SOS1 through in vitro AMPylation experiments using full-length protein and whole-domain truncation mutants. We found that SOS1 can become AMPylated at a tyrosine residue possibly within the Cdc25 domain of the protein, the Dbl homology domain is vital for efficient auto-AMPylation activity, and the C-terminal proline-rich domain exhibits a complex regulatory function. The proline-rich domain alone also appears to be capable of catalyzing a separate, unidentified covalent self-modification using a fluorescent ATP analogue. Finally, SOS1 was shown to be capable of catalyzing the AMPylation of two endogenous human protein substrates: a ubiquitous, unidentified protein of ~49kDa and another breast-cancer specific, unidentified protein of ~28kDa.
ContributorsOber-Reynolds, Benjamin John (Author) / LaBaer, Joshua (Thesis director) / Borges, Chad (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of Life Sciences (Contributor)
Created2014-05
137546-Thumbnail Image.png
Description
In vitro measurements of cellular respiration have proven to be key biomarkers for the early onset of tumor formation in certain pathological mechanisms.1 The examination of isolated single cells has shown promise in predicting the onset of cancerous growth much earlier than current methods allow.2 Specifically, measurements of the oxygen

In vitro measurements of cellular respiration have proven to be key biomarkers for the early onset of tumor formation in certain pathological mechanisms.1 The examination of isolated single cells has shown promise in predicting the onset of cancerous growth much earlier than current methods allow.2 Specifically, measurements of the oxygen consumption rates of precancerous cells have elucidated outliers which predict the early onset of esophageal cancer.2 Single cell profiling can fit in to current pathology studies and can serve as a step along the way, much like PCR or gel assays, in detecting biomarkers earlier than current clinical methods.3 Measurement of these single cell metabolic rates is currently limited to 25 cells per experiment. It is the aim of this project to increase throughput from 25 cells to 225 cells per experiment via the implementation of new hardware and software which fit with current methods to allow the same experimental structure. Successful implementation of such methods will allow for more rapid and efficient data collection, facilitating quantitative results and nine times the yield from the same experimental manpower and funding. This document focuses on the implementation ultra high density (UHD) hardware consisting of a pneumatic molar design, angular adjustment features and a mechanical Z-stage. These components have produced the most encouraging results thus far and are the key changes in transitioning to higher throughput experiments.
ContributorsUeberroth, Benjamin Edward (Author) / Kelbauskas, Laimonas (Thesis director) / Ashili, Shashanka (Committee member) / Myers, Jakrey (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of Life Sciences (Contributor)
Created2013-05
137039-Thumbnail Image.png
Description
Sickle Cell Disease (SCD) is a prevalent genetic disease in Africa, and specifically in Kenya. The lack of available relevant disease education and screening mean that most don't understand the importance of getting testing and many children die before they can get prophylactic care. This project was designed to address

Sickle Cell Disease (SCD) is a prevalent genetic disease in Africa, and specifically in Kenya. The lack of available relevant disease education and screening mean that most don't understand the importance of getting testing and many children die before they can get prophylactic care. This project was designed to address the lack of knowledge with supplemental educational materials to be partnered with an engineering capstone project that provides a low cost diagnostic test.
ContributorsShawver, Jamie Christine (Author) / Caplan, Michael (Thesis director) / Snyder, Jan (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05