Matching Items (16)
Filtering by

Clear all filters

158733-Thumbnail Image.png
Description
Borrelia burgdorferi (Bb), the causative agent of Lyme disease, is a unique pathogen, with a complex genome and unique immune evasion tactics. It lacks genes encoding proteins involved in nutrient synthesis and typical metabolic pathways, and therefore relies on the host for nutrients. The Bb genome encodes both an unusually

Borrelia burgdorferi (Bb), the causative agent of Lyme disease, is a unique pathogen, with a complex genome and unique immune evasion tactics. It lacks genes encoding proteins involved in nutrient synthesis and typical metabolic pathways, and therefore relies on the host for nutrients. The Bb genome encodes both an unusually high number of predicted outer surface lipoproteins of unknown function but with multiple complex roles in pathogenesis, and an unusually low number of predicted outer membrane proteins, given the necessity of bringing in the required nutrients for pathogen survival. Cellular processing of bacterial membrane proteins is complex, and structures of proteins from Bb have all been solved without the N-terminal signal sequence that directs the protein to proper folding and placement in the membrane. This dissertation presents the first membrane-directed expression in E. coli of several Bb proteins involved in the pathogenesis of Lyme disease. For the first time, I present evidence that the predicted lipoprotein, BBA57, forms a large alpha-helical homo-multimeric complex in the OM, is soluble in several detergents, and purifiable. The purified BBA57 complex forms homogeneous, 10 nm-diameter particles, visible by negative stain electron microscopy. Two-dimensional class averages from negative stain images reveal the first low-resolution particle views, comprised of a ring of subunits with a plug on top, possibly forming a porin or channel. These results provide the first evidence to support our theories that some of the predicted lipoproteins in Bb form integral-complexes in the outer membrane, and require proper membrane integration to form functional proteins.
ContributorsRobertson, Karie (Author) / Hansen, Debra T. (Thesis advisor) / Fromme, Petra (Thesis advisor) / Van Horn, Wade (Committee member) / Chiu, Po-Lin (Committee member) / Arizona State University (Publisher)
Created2020
158512-Thumbnail Image.png
Description
In this study, the stability of two protein homo-oligomers, the β clamp (homodimer) from E. coli and the Proliferation Cell Nuclear Antigen (PCNA) from the yeast cell, were characterized. These clamps open through one interface by another protein called clamp loader, which helps it to encircle the DNA template strand.

In this study, the stability of two protein homo-oligomers, the β clamp (homodimer) from E. coli and the Proliferation Cell Nuclear Antigen (PCNA) from the yeast cell, were characterized. These clamps open through one interface by another protein called clamp loader, which helps it to encircle the DNA template strand. The β clamp protein binds with DNA polymerase and helps it to slide through the template strand and prevents its dissociation from the template strand. The questions need to be to answered in this research are, whether subunit stoichiometry contributes to the stability of the clamp proteins and how does the clamp loader open up the clamp, does it have to exert force on the clamp or does it take advantage of the dynamic behavior of the interface?

The x-ray crystallography structure of the β clamp suggests that there are oppositely charged amino acid pairs present at the interface of the dimer. They can form strong electrostatic interactions between them. However, for Proliferation Cell Nuclear Antigen (PCNA), there are no such charged amino acids present at its interface. High sodium chloride (NaCl) concentrations were used to disrupt the electrostatic interactions at the interface. The role of charged pairs in the clamp interface was characterized by measuring the apparent diffusion times (\tau_{app}) with fluorescence correlation spectroscopy (FCS). However, the dissociation of the Proliferation Cell Nuclear Antigen (PCNA) trimer does not depend on sodium chloride (NaCl) concentration.

In the next part of my thesis, potassium glutamate (KGlu) and glycine betaine (GB) were used to investigate their effect on the stability of both clamp proteins. FCS experiments with labeled β clamp and Proliferation Cell Nuclear Antigen (PCNA) were performed containing different concentrations of potassium glutamate and glycine betaine in the solution, showed that the apparent diffusion time\ {(\tau}_{app}) increases with potassium glutamate and glycine betaine concentrations, which indicate clamps are forming higher-order oligomers. Solute molecules get excluded from the protein surface when the binding affinity of the protein surface for water molecules is more than solutes (potassium glutamate, and glycine betaine), which has a net stabilizing effect on the protein structure.
ContributorsPUROHIT, ANIRBAN (Author) / Levitus, Marcia (Thesis advisor) / Van Horn, Wade (Committee member) / Liu, Yan (Committee member) / Arizona State University (Publisher)
Created2020
158015-Thumbnail Image.png
Description
Integrins are a family of αβ heterodimeric transmembrane receptors. As an important class of adhesion receptors, integrins mediate cell adhesion, migration, and transformation through bidirectional signaling across the plasma membrane. Among the 24 different types of integrins, which are notorious for their capacity to recognize multiple ligands, the leukocyte integrin

Integrins are a family of αβ heterodimeric transmembrane receptors. As an important class of adhesion receptors, integrins mediate cell adhesion, migration, and transformation through bidirectional signaling across the plasma membrane. Among the 24 different types of integrins, which are notorious for their capacity to recognize multiple ligands, the leukocyte integrin αMβ2 (Mac-1) is the most promiscuous member. In contrast to other integrins, Mac1 is unique with respect to its preference for cationic ligands. In this thesis, a new Mac-1 cationic ligand named pleiotrophin (PTN) is uncovered. PTN is an important cytokine and growth factor. Its activities in mitogenesis and angiogenesis have been extensively researched, but its function on immune cells was not widely explored. In this research, the cell biology and biochemical evidences show that PTN can regulate various Mac-1-expressing cells functions through the activation of the extracellular signal regulated kinases. Direct interactions between PTN and the αM I-domain, the major ligand-binding domain of Mac-1, has been shown using biolayer interferometry analyses and confirmed by solution NMR spectroscopy. The binding epitopes and the binding mechanism of PTN and αM I-domain interaction were further revealed by peptide array analysis and microscale thermophoresis. The data suggested that PTN’s thrombospondin type-1 repeat (TSR) domains and αM I-domain metal-ion-dependent adhesion site (MIDAS) are the major binding sites. In addition, this interaction followed a novel metal-ion independent binding mechanism which has not been found in other integrins. After a series of characterizations of αM I-domain using both experimental and computational methods, it showed that activated αM I-domain is significantly more dynamic than inactive αM I-domain, and the dynamics seem to modulate the effect of Mg2+ on its interactions with cationic ligands. To further explore the PTN induced Mac-1 structure rearrangement, intact Mac-1 was studied by negative stain electron microscopy. The results showed that the Mac-1 exhibited a very heterogeneous conformation distribution in detergents. In contrast, the Mac-1 adopted predominantly the bent conformation in phospholipid nanodisc condition. This Mac-1 nanodisc model provides a new platform for studying intact Mac-1 activation mechanism in a more physiologically relevant manner in the future.
ContributorsShen, Di (Author) / Wang, Xu (Thesis advisor) / Van Horn, Wade (Committee member) / Yarger, Jeffery (Committee member) / Arizona State University (Publisher)
Created2020
132081-Thumbnail Image.png
Description
Transient receptor potential (TRP) channels are a superfamily of ion channels found in plasma membranes of both single-celled and multicellular organisms. TRP channels all share the common aspect of having six transmembrane helices and a TRP domain. These structures tetramerize to form a receptor-activated non-selective ion channel. The specific protein

Transient receptor potential (TRP) channels are a superfamily of ion channels found in plasma membranes of both single-celled and multicellular organisms. TRP channels all share the common aspect of having six transmembrane helices and a TRP domain. These structures tetramerize to form a receptor-activated non-selective ion channel. The specific protein being investigated in this thesis is the human transient receptor potential melastatin 8 (hTRPM8), a channel activated by the chemical ligand menthol and temperatures below 25 °C. TRPM8 is responsible for cold sensing and is related to pain relief associated with cooling compounds. TRPM8 has also been found to play a role in the regulation of various types of tumors. The structure of TRPM8 has been obtained through cryo-electron microscopy, but the functional contribution of individual portions of the protein to the overall protein function is unknown.
To gain more information about the function of the transmembrane region of hTRPM8, it was expressed in Escherichia coli (E. coli) and purified in detergent membrane mimics for experimentation. The construct contains the S4-S5 linker, pore domain (S5 and S6 transmembrane helices), pore helix, and TRP box. hTRPM8-PD+ was purified in the detergents n-Dodecyl-B-D-Maltoside (DDM), 16:0 Lyso PG, 1-Palmitoyl-2-hydroxy-sn-glycero-3-phosphoglycerol (LPPG), and 14:0 Lyso PG, 1-Myristoyl-2-hydroxy-sn-glycero-3-phosphoglycerol (LMPG) to determine which detergent resulted in a hTRPM8-PD+ sample of the most stability, purity, and highest concentrations. Following bacterial expression and protein purification, hTRPM8-PD+ was studied and characterized with circular dichroism (CD) spectroscopy to learn more about the secondary structures and thermodynamic properties of the construct. Further studies can be done with more circular dichroism (CD) spectroscopy, planar lipid bilayer (BLM) electrophysiology, and nuclear magnetic resonance spectroscopy (NMR) to gain more understanding of how the pore domain plus contributes to the activity of the whole protein construct.
ContributorsMorelan, Danielle Taylor (Co-author) / Morelan, Danielle (Co-author) / Van Horn, Wade (Thesis director) / Chen, Julian (Committee member) / Luu, Dustin (Committee member) / Dean, W.P. Carey School of Business (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-12
166148-Thumbnail Image.png
Description
Ribulose-1,5-bisphosphate carboxylase/oxygenase enzyme (Rubisco) is responsible for the majority of carbon fixation and is also the least efficient enzyme on Earth. Rubisco assists 1,5-ribulose bisphosphate (RuBP) in binding CO2, however CO2 and oxygen have similar binding affinities to Rubisco, resulting in a low enzymatic efficiency. Rubisco activase (Rca) is an

Ribulose-1,5-bisphosphate carboxylase/oxygenase enzyme (Rubisco) is responsible for the majority of carbon fixation and is also the least efficient enzyme on Earth. Rubisco assists 1,5-ribulose bisphosphate (RuBP) in binding CO2, however CO2 and oxygen have similar binding affinities to Rubisco, resulting in a low enzymatic efficiency. Rubisco activase (Rca) is an enzyme that removes inhibiting molecules from Rubisco’s active sites, promoting the Rubisco activity. The binding of Rubisco and Rca stimulates a high-rate of carbon fixation and lowers the overall CO2 concentration in the atmosphere. To study the interaction between the two complexes, Rubisco was extracted from baby spinach (Spinacia oleracea) and purified using anion-exchange chromatography and size-exclusion chromatography. Rca was designed to use a recombinant gene and overexpressed in Escherichia coli (E. coli). The purified proteins were verified using SDS-PAGE. The two proteins were assembled in vitro and the interaction of the protein complex was stabilized using glutaraldehyde cross-linking. The samples were then deposited on a carbon-coated electron microscopy (EM) grid, stained with uranyl formate, and observed under a transmission electron microscope (TEM). The ultimate goal is to image the specimen and reconstruct the structure of the protein complex at high resolution.
ContributorsHart, Hayden (Author) / Chiu, Po-Lin (Thesis director) / Redding, Kevin (Committee member) / Van Horn, Wade (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor) / Department of Military Science (Contributor)
Created2022-05
Description

In intracranial aneurysms, multiple factors and biochemical pathways are believed to be involved in the event of a rupture. The epidermal growth factor receptor (EGFR) activation pathway is of particular interest as a way to understand and target the mechanism of rupture due to its established role in cellular proliferation

In intracranial aneurysms, multiple factors and biochemical pathways are believed to be involved in the event of a rupture. The epidermal growth factor receptor (EGFR) activation pathway is of particular interest as a way to understand and target the mechanism of rupture due to its established role in cellular proliferation and inflammation. Furthermore, unfolded protein responses in vascular cells’ endoplasmic reticulum (ER), known as ER stress, have emerged as a potential downstream mechanism by which inflammatory EGFR activation may lead to aneurysm rupture. The purpose of this project was to investigate the role of EGFR inhibition on the aneurysm rupture rate in a preclinical model, investigate the role of ER stress induction on the aneurysm rupture rate, and confirm which cellular phenomenon lies upstream in this mechanistic cascade. Based on analyses of aneurysm rupture rate and gene expression in the Circle of Willis, ER stress and inflammatory unfolded protein responses were found to be downstream of initial EGFR activation, which may be an effective therapeutic target for preventing aneurysm rupture in a clinical setting.

ContributorsPolen, Kyle (Author) / Van Horn, Wade (Thesis director) / Martin, Thomas (Committee member) / Hashimoto, Tomoki (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor) / School of Human Evolution & Social Change (Contributor)
Created2022-12