Matching Items (27)
Filtering by

Clear all filters

156512-Thumbnail Image.png
Description
Alzheimer’s disease is a major problem affecting over 5.7 million Americans. Although much is known about the effects of this neurogenerative disease, the exact pathogenesis is still unknown. One very important characteristic of Alzheimer’s is the accumulation of beta amyloid protein which often results in plaques. To understand these beta

Alzheimer’s disease is a major problem affecting over 5.7 million Americans. Although much is known about the effects of this neurogenerative disease, the exact pathogenesis is still unknown. One very important characteristic of Alzheimer’s is the accumulation of beta amyloid protein which often results in plaques. To understand these beta amyloid proteins better, antibody fragments may be used to bind to these oligomers and potentially reduce the effects of Alzheimer’s disease.

This thesis focused on the expression and crystallization the fragment antigen binding antibody fragment A4. A fragment antigen binding fragment was chosen to be worked with as it is more stable than many other antibody fragments. A4 is important in Alzheimer’s disease as it is able to identify toxic beta amyloid.
ContributorsColasurd, Paige (Author) / Nannenga, Brent (Thesis advisor) / Mills, Jeremy (Committee member) / Varman, Arul (Committee member) / Arizona State University (Publisher)
Created2018
157268-Thumbnail Image.png
Description
Chromatin is the dynamic structure of proteins and nucleic acids into which eukaryotic genomes are organized. For those looking to engineer mammalian genomes, chromatin is both an opportunity and an obstacle. While chromatin provides another tool with which to control gene expression, regional density can lead to variability in genome

Chromatin is the dynamic structure of proteins and nucleic acids into which eukaryotic genomes are organized. For those looking to engineer mammalian genomes, chromatin is both an opportunity and an obstacle. While chromatin provides another tool with which to control gene expression, regional density can lead to variability in genome editing efficiency by CRISPR/Cas9 systems. Many groups have attempted to de-silence chromatin to regulate genes and enhance DNA's accessibility to nucleases, but inconsistent results leave outstanding questions. Here, I test different types of activators, to analyze changes in chromatin features that result for chromatin opening, and to identify the critical biochemical features that support artificially generated open, transcriptionally active chromatin.

I designed, built, and tested a panel of synthetic pioneer factors (SPiFs) to open condensed, repressive chromatin with the aims of 1) activating repressed transgenes in mammalian cells and 2) reversing the inhibitory effects of closed chromatin on Cas9-endonuclease activity. Pioneer factors are unique in their ability to bind DNA in closed chromatin. In order to repurpose this natural function, I designed SPiFs from a Gal4 DNA binding domain, which has inherent pioneer functionality, fused with chromatin-modifying peptides with distinct functions.

SPiFs with transcriptional activation as their primary mechanism were able to reverse this repression and induced a stably active state. My work also revealed the active site from proto-oncogene MYB as a novel transgene activator. To determine if MYB could be used generally to restore transgene expression, I fused it to a deactivated Cas9 and targeted a silenced transgene in native heterochromatin. The resulting activator was able to reverse silencing and can be chemically controlled with a small molecule drug.

Other SPiFs in my panel did not increase gene expression. However, pretreatment with several of these expression-neutral SPiFs increased Cas9-mediated editing in closed chromatin, suggesting a crucial difference between chromatin that is accessible and that which contains genes being actively transcribed. Understanding this distinction will be vital to the engineering of stable transgenic cell lines for product production and disease modeling, as well as therapeutic applications such as restoring epigenetic order to misregulated disease cells.
ContributorsBarrett, Cassandra M (Author) / Haynes, Karmella A (Thesis advisor) / Rege, Kaushal (Committee member) / Mills, Jeremy (Committee member) / Kiani, Samira (Committee member) / Arizona State University (Publisher)
Created2019
135076-Thumbnail Image.png
Description
The dopamine 2 receptor (D2R) is a Class A GPCR which is essential for signaling in the nervous system, and has been implicated in numerous illnesses. While there are over 50 currently approved drugs which act on D2R, the structure has never been determined in detail. Although crystallography has historically

The dopamine 2 receptor (D2R) is a Class A GPCR which is essential for signaling in the nervous system, and has been implicated in numerous illnesses. While there are over 50 currently approved drugs which act on D2R, the structure has never been determined in detail. Although crystallography has historically been difficult with GPCRs, in recent years many structures have been solved using lipidic cubic phase (LCP) crystallization techniques. Sample preparation for LCP crystallization typically requires optimization of genetic constructs, recombinant expression, and purification techniques in order to produce a sample with sufficient stability and homogeneity. This study compares several genetic constructs utilizing different promoters, fusion proteins, fusion positions, and truncations in order to determine a high quality construct for LCP crystallization of
D2R. All constructs were expressed using the Bac-to-bac baculovirus expression system, then extracted with n-Dodecyl-β-D-Maltoside (DDM) and purified using metal affinity chromatography. Samples were then tested for quantity, purity, and homogeneity using SDS-PAGE, western blot, and size-exclusion chromatography. High quality samples were chosen based on insect cell expression levels, purification yield, and stability estimated by the levels of homomeric protein relative to aggregated protein. A final construct was chosen with which to continue future studies in optimization of thermal stability and crystallization conditions. Future work on this project is required to produce a sample amenable to crystallization. Screening of ligands for co-crystallization,
thermostabilizing point mutations, and potentially optimization of extraction and purification techniques prior to crystallization trials. Solving the D2R structure will lead to an increased understanding of its signaling mechanism and the mechanisms of currently approved drugs, while also providing a basis for more effective structure-based drug design.
ContributorsErler, Maya Marie (Author) / Liu, Wei (Thesis director) / He, Ximin (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
134915-Thumbnail Image.png
Description
G protein-coupled receptors, or GPCRs, are receptors located within the membrane of cells that elicit a wide array of cellular responses through their interactions with G proteins. Recent advances in the use of lipid cubic phase (LCP) for the crystallization of GPCRs, as well as increased knowledge of techniques to

G protein-coupled receptors, or GPCRs, are receptors located within the membrane of cells that elicit a wide array of cellular responses through their interactions with G proteins. Recent advances in the use of lipid cubic phase (LCP) for the crystallization of GPCRs, as well as increased knowledge of techniques to improve receptor stability, have led to a large increase in the number of available GPCR structures, despite historic difficulties. This project is focused on the histamine family of receptors, which are Class A GPCRs that are involved in the body’s allergic and inflammatory responses. In particular, the goal of this project was to design, express, and purify histamine receptors with the ultimate goal of crystallization. Successive rounds of optimization included the use of recombinant DNA techniques in E.coli to truncate sections of the proteins and the insertion of several fusion partner proteins to improve receptor expression and stability. All constructs were expressed in a Bac-to-Bac baculovirus expression system using Sf9 insect cells, solubilized using n-Dodecyl-β-D-Maltoside (DDM), and purified using immobilized metal affinity chromatography. Constructs were then analyzed by SDS-Page, Western blot, and size-exclusion chromatography to determine their presence, purity, and homogeneity. Along with their expression data from insect cells, the most stable and homogeneous construct from each round was used to design successive optimizations. After 3 rounds of construct design for each receptor, much work remains to produce a stable sample that has the potential to crystallize. Future work includes further optimization of the insertion site of the fusion proteins, ligand screening for co-crystallization, optimization of purification conditions, and screening of potential thermostabilizing point mutations. Success in solving a structure will allow for a more detailed understanding of the receptor function in addition to its vital use in rational drug discovery.
ContributorsCosgrove, Steven Andrew (Author) / Liu, Wei (Thesis director) / Mills, Jeremy (Committee member) / Mazor, Yuval (Committee member) / W. P. Carey School of Business (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
168314-Thumbnail Image.png
Description
Cryogenic Electron Microscopy (Cryo-EM) is a method that can be used for studying the structure of biological systems. Biological samples are frozen to cryogenic temperatures and embedded in a vitreous ice when they are imaged by electrons. Due to its ability to preserve biological specimens in near-native conditions, cryo-EM has

Cryogenic Electron Microscopy (Cryo-EM) is a method that can be used for studying the structure of biological systems. Biological samples are frozen to cryogenic temperatures and embedded in a vitreous ice when they are imaged by electrons. Due to its ability to preserve biological specimens in near-native conditions, cryo-EM has a significant contribution to the field of structural biology.Single-particle cryo-EM technique was utilized to investigate the dynamical characteristics of various protein complexes such as the Nogo receptor complex, polymerase ζ (Polζ) in yeast and human integrin ⍺vβ8-pro-TGFβ1-GARP complex. Furthermore, I proposed a new method that can potentially improve the sample preparation for cryo-EM. The Nogo receptor complex was expressed using baculovirus expression system in sf9 insect cells and isolated for structural studies. Nogo receptor complex was found to have various stoichiometries and interactions between individual proteins. A structural investigation of the yeast apo polymerase ζ holoenzyme was also carried out. The apo Polζ displays a concerted motions associated with expansion of the Polζ DNA-binding channel upon DNA binding. Furthermore, a lysine residue that obstructs the DNA-binding channel in apo Polζ was found and suggested a gating mechanism. In addition, cryo-EM studies of the human integrin ⍺vβ8-pro-TGFβ1-GARP complex was conducted to assess its dynamic interactions. The 2D classifications showed the ⍺vβ8-pro-TGFβ1-GARP complex is highly flexible and required several sample preparation techniques such as crosslinking and graphene oxide coating to improve protein homogeneity on the EM grid. To overcome challenges within the cryo-EM technique such as particle adsorption on air-water interface, I have documented a collaborative work on the development and application of lipid monolayer sandwich on cryo-EM grid. Cryogenic electron tomography (cryo-ET) along with cryo-EM were used to study the characteristics of lipid monolayer sandwich as a potential protective layer for EM grid. The cryo-ET results demonstrated that the thickness of lipid monolayer is adequate for single-particle cryo-EM processing. Furthermore, there was no appearance of preferred orientations in cryo-EM and cryo-ET images. To establish that this method is actually beneficial, more data must be collected, and high-resolution structures of protein samples must be obtained using this methodology.
ContributorsTruong, Chloe Du (Author) / Chiu, Po-Lin (Thesis advisor) / Liu, Wei (Committee member) / Mazor, Yuval (Committee member) / Arizona State University (Publisher)
Created2021
168308-Thumbnail Image.png
Description
Structural-based drug discovery is becoming the essential tool for drug development withlower cost and higher efficiency compared to the conventional method. Knowledge of the three-dimensional structure of protein targets has the potential to accelerate the process for screening drug candidates. X-ray crystallography has proven to be the most used and indispensable technology in

Structural-based drug discovery is becoming the essential tool for drug development withlower cost and higher efficiency compared to the conventional method. Knowledge of the three-dimensional structure of protein targets has the potential to accelerate the process for screening drug candidates. X-ray crystallography has proven to be the most used and indispensable technology in structural-based drug discovery. The provided comprehensive structural information about the interaction between the disease-related protein target and ligand can guide the chemical modification on the ligand to improve potency and selectivity. X-ray crystallography has been upgraded from traditional synchrotron to the third generation, which enabled the surge of the structural determination of macromolecular. The introduction of X-ray free electron laser further alleviated the uncertain and time-consuming crystal size optimization process and extenuated the radiation damage by “diffraction before destruction”. EV-D68 2A protease was proved to be an important pharmaceutical target for acute flaccid myelitis. This thesis reports the first atomic structure of the EV-D68 2A protease and the structuresof its two mutants, revealing it adopting N-terminal four-stranded sheets and C-terminal six-stranded ß-barrels structure, with a tightly bound zinc atom. These structures will guide the chemical modification on its inhibitor, Telaprevir. Integrin ⍺Mβ2 is an integrin with the α I-domain, related to many immunological functions including cell extravasation, phagocytosis, and immune synapse formation, so studying the molecular ligand-binding mechanism and activation mechanism of ⍺Mβ2 is of importance. This thesis uncovers the preliminary crystallization condition of ⍺Mβ2-I domain in complex with its ligand Pleiotrophin and the initial structural model. The structural model shows consistency with the previous hypothesis that the primary binding sites are metal iondependent adhesion sites on ⍺Mβ2-I domain and the thrombospondin type-1 repeat (TSR) domains of Pleiotrophin. Drug molecules with high potency and selectivity can be designed based on the reported structures of the EV-D68 2A protease and ⍺Mβ2-I domain in the future.
ContributorsLiu, Chang (Author) / Liu, Wei (Thesis advisor) / Stephanopoulos, Nicholas (Committee member) / Chiu, Po-Lin (Committee member) / Arizona State University (Publisher)
Created2021
168732-Thumbnail Image.png
Description
G protein coupled receptors (GPCRs) mediate various of physiologicalactivities which makes them significant drug targets. Determination of atomic level structure of GPCRs facilitates the structure-based drug design. The most widely used method currently for solving GPCR structure is still protein crystallography especially lipidic cubic phase (LCP) crystallization. LCP could mimic the native environment of

G protein coupled receptors (GPCRs) mediate various of physiologicalactivities which makes them significant drug targets. Determination of atomic level structure of GPCRs facilitates the structure-based drug design. The most widely used method currently for solving GPCR structure is still protein crystallography especially lipidic cubic phase (LCP) crystallization. LCP could mimic the native environment of membrane protein which stable the membrane proteins. Traditional synchrotron source requires large size large size protein crystals (>30 micron) due to the radiation damage during data collection. However, acquiring large sized protein crystals is challenging and not guaranteed practically. In this study, a novel method was developed which combined LCP technology and micro-electron diffraction (MicroED) technology. LCP-MicroED technology was able to collect complete diffraction data sets from serval submicron protein crystals and deliver high resolution protein structures. This technology was first confirmed with soluble protein crystals, proteinase K and small molecule crystals, cholesterol. Furthermore, this novel method was applied to a human GPCR target, Î22- adrenergic receptor (Î22AR). The structure model was successfully built which proved the feasibility of applying LCP-MicroED method to GPCRs and other membrane proteins. Besides, in this research, a novel human GPCR target, human histamine 4 receptor(H4R) was studied. Different constructs were expressed, purified, and characterized. Some key residuals that affect ligand binding were confirmed.
ContributorsJing, Liang (Author) / Mazor, Yuval (Thesis advisor) / Mills, Jeremy (Committee member) / Wang, Xu (Committee member) / Arizona State University (Publisher)
Created2022
185116-Thumbnail Image.png
Description

CRISPR-Cas based DNA precision genome editing tools such as DNA Adenine Base Editors (ABEs) could remedy the majority of human genetic diseases caused by point mutations (aka Single Nucleotide Polymorphisms, SNPs). ABEs were designed by fusing CRISPR-Cas9 and DNA deaminating enzymes. Since there is no natural enzyme able to deaminate

CRISPR-Cas based DNA precision genome editing tools such as DNA Adenine Base Editors (ABEs) could remedy the majority of human genetic diseases caused by point mutations (aka Single Nucleotide Polymorphisms, SNPs). ABEs were designed by fusing CRISPR-Cas9 and DNA deaminating enzymes. Since there is no natural enzyme able to deaminate adenosine in DNA, the deaminase domain of ABE was evolved from an Escherichia coli tRNA deaminase, EcTadA. Initial rounds of directed evolution resulted in ABE7.10 enzyme (which contains two deaminases EcTadA and TadA7.10 fused to Cas9) which was further evolved to ABE8e containing a single TadA8e and Cas9. The original EcTadA as well as the evolved TadA8e where shown to form homodimers in solution. Although it was shown that tRNA binding pocket in EcTadA is composed by both monomers, the significance of TadA dimerization in either tRNA or DNA deamination has not been demonstrated. Here we explore the role of TadA dimerization on the DNA adenosine deamination activity of ABE8e. We hypothesize that the dimerization of TadA8e is more important for the DNA deamination than for the tRNA deamination. To explore this, I conducted a urea titration on ABE8e to disrupt TadA8e dimerization and performed single turnover kinetics assays to assess DNA deamination rate of ABE8e’s. Results showed that DNA deamination rate and efficiency of ABE8e was already impaired at 4M urea and completely lost at 7M. Unfortunately, CD measurements at the equivalent urea concentrations indicate that the loss of activity is due to the unfolding of ABE8e rather than the disruption of TadA8e’s dimerization.

ContributorsBennett, Marisa (Author) / Lapinaite, Audrone (Thesis director) / Mills, Jeremy (Committee member) / Stephanopolous, Nicholas (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / School of Molecular Sciences (Contributor)
Created2023-05
171479-Thumbnail Image.png
Description
The world today needs novel solutions to address current challenges in areas spanning areas from sustainable manufacturing to healthcare, and biotechnology offers the potential to help address some of these issues. One tool that offers opportunities across multiple industries is the use of nonribosomal peptide synthases (NRPSs). These are modular

The world today needs novel solutions to address current challenges in areas spanning areas from sustainable manufacturing to healthcare, and biotechnology offers the potential to help address some of these issues. One tool that offers opportunities across multiple industries is the use of nonribosomal peptide synthases (NRPSs). These are modular biological factories with individualized subunits that function in concert to create novel peptides.One element at the heart of environmental health debates today is plastics. Biodegradable alternatives for petroleum-based plastics is a necessity. One NRPS, cyanophycin synthetase (CphA), can produce cyanophycin grana protein (CGP), a polymer composed of a poly-aspartic acid backbone with arginine side chains. The aspartic backbone has the potential to replace synthetic polyacrylate, although current production costs are prohibitive. In Chapter 2, a CphA variant from Tatumella morbirosei is characterized, that produces up to 3x more CGP than other known variants, and shows high iCGP specificity in both flask and bioreactor trials. Another CphA variant, this one from Acinetobacter baylyi, underwent rational protein design to create novel mutants. One, G217K, is 34% more productive than the wild type, while G163K produces a CGP with shorter chain lengths. The current structure refined from 4.4Å to 3.5Å. Another exciting application of NRPSs is in healthcare. They can be used to generate novel peptides such as complex antibiotics. A recently discovered iterative polyketide synthase (IPTK), dubbed AlnB, produces an antibiotic called allenomycin. One of the modular subunits, a dehydratase named AlnB_DH, was crystallized to 2.45Å. Several mutations were created in multiple active site residues to help understand the functional mechanism of AlnB_DH. A preliminary holoenzyme AlnB structure at 3.8Å was generated although the large disorganized regions demonstrated an incomplete structure. It was found that chain length is the primary factor in driving dehydratase action within AlnB_DH, which helps lend understanding to this module.
ContributorsSwain, Kyle (Author) / Nannenga, Brent (Thesis advisor) / Nielsen, David (Committee member) / Mills, Jeremy (Committee member) / Seo, Eileen (Committee member) / Acharya, Abhinav (Committee member) / Arizona State University (Publisher)
Created2022
189261-Thumbnail Image.png
Description
Natures hardworking machines, proteins, are dynamic beings. Comprehending the role of dynamics in mediating allosteric effects is paramount to unraveling the intricate mechanisms underlying protein function and devising effective protein design strategies. Thus, the essential objective of this thesis is to elucidate ways to use protein dynamics based tools integrated

Natures hardworking machines, proteins, are dynamic beings. Comprehending the role of dynamics in mediating allosteric effects is paramount to unraveling the intricate mechanisms underlying protein function and devising effective protein design strategies. Thus, the essential objective of this thesis is to elucidate ways to use protein dynamics based tools integrated with evolution and docking techniques to investigate the effect of distal allosteric mutations on protein function and further rationally design proteins. To this end, I first employed molecular dynamics (MD) simulations, Dynamic Flexibility Index (DFI) and Dynamic Coupling Index (DCI) on PICK1 PDZ, Butyrylcholinesterase (BChE), and Dihydrofolate reductase (DHFR) to uncover how these proteins utilize allostery to tune activity. Moreover, a new classification technique (“Controller”/“Controlled”) based on asymmetry in dynamic coupling is developed and applied to DHFR to elucidate the effect of allosteric mutations on enzyme activity. Subsequently, an MD driven dynamics design approach is applied on TEM-1 β-lactamase to tailor its activity against β-lactam antibiotics. New variants were created, and using a novel analytical approach called "dynamic distance analysis" (DDA) the degree of dynamic similarity between these variants were quantified. The experimentally confirmed results of these studies showed that the implementation of MD driven dynamics design holds significant potential for generating variants that can effectively modulate activity and stability. Finally, I introduced an evolutionary guided molecular dynamics driven protein design approach, integrated co-evolution and dynamic coupling (ICDC), to identify distal residues that modulate binding site dynamics through allosteric mechanisms. After validating the accuracy of ICDC with a complete mutational data set of β-lactamase, I applied it to Cyanovirin-N (CV-N) to identify allosteric positions and mutations that can modulate binding affinity. To further investigate the impact of mutations on the identified allosteric sites, I subjected putative mutants to binding analysis using Adaptive BP-Dock. Experimental validation of the computational predictions demonstrated the efficacy of integrating MD, DFI, DCI, and evolution to guide protein design. Ultimately, the research presented in this thesis demonstrates the effectiveness of using evolutionary guided molecular dynamics driven design alongside protein dynamics based tools to examine the significance of allosteric interactions and their influence on protein function.
ContributorsKazan, Ismail Can (Author) / Ozkan, Sefika Banu (Thesis advisor) / Ghirlanda, Giovanna (Thesis advisor) / Mills, Jeremy (Committee member) / Beckstein, Oliver (Committee member) / Arizona State University (Publisher)
Created2023