Matching Items (23)
Filtering by

Clear all filters

136317-Thumbnail Image.png
Description
Transient Receptor Potential (TRP) channels are a diverse class of ion channels notable as polymodal sensors. TRPM8 is a TRP channel implicated in cold sensation, nociception, and a variety of human diseases, including obesity and cancer. Despite sustained interest in TRPM8 since its discovery in 2001, many of the molecular

Transient Receptor Potential (TRP) channels are a diverse class of ion channels notable as polymodal sensors. TRPM8 is a TRP channel implicated in cold sensation, nociception, and a variety of human diseases, including obesity and cancer. Despite sustained interest in TRPM8 since its discovery in 2001, many of the molecular mechanisms that underlie function are not yet clear. Knowledge of these properties could have implications for medicine and physiological understanding of sensation and signaling. Structures of TRP channels have proven challenging to solve, but recent Cryoelectron microscopy (Cryo-EM) structures of TRPV1 provide a basis for homology-based modeling of TRP channel structures and interactions. I present an ensemble of 11,000 Rosetta computational homology models of TRPM8 based on the recent Cryo-EM apo structure of TRPV1 (PDB code:3J5P). Site-directed mutagenesis has provided clues about which residues are most essential for modulatory ligands to bind, so the models presented provide a platform to investigate the structural basis of TRPM8 ligand modulation complementary to existing functional and structural information. Menthol and icilin appear to interact with interfacial residues in the sensor domain (S1-S4). One consensus feature of these sites is the presence of local contacts to the S4 helix, suggesting this helix may be mechanistically involved with the opening of the pore. Phosphatidylinositol 4,5-bisphosphate (PIP2)has long been known to interact with the C-terminus of TRPM8, and some of the homology models contain plausible binding pockets where PIP2 can come into contact with charged residues known to be essential for PIP2 modulation. Future in silico binding experiments could provide testable hypothesis for in vitro structural studies, and experimental data (e.g. distance constraints from electron paramagnetic resonance spectroscopy [EPR]) could further refine the models.
ContributorsHelsell, Cole Vincent Maher (Author) / Van Horn, Wade (Thesis director) / Wang, Xu (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2015-05
137802-Thumbnail Image.png
Description
Identifying disease biomarkers may aid in the early detection of breast cancer and improve patient outcomes. Recent evidence suggests that tumors are immunogenic and therefore patients may launch an autoantibody response to tumor associated antigens. Single-chain variable fragments of autoantibodies derived from regional lymph node B cells of breast cancer

Identifying disease biomarkers may aid in the early detection of breast cancer and improve patient outcomes. Recent evidence suggests that tumors are immunogenic and therefore patients may launch an autoantibody response to tumor associated antigens. Single-chain variable fragments of autoantibodies derived from regional lymph node B cells of breast cancer patients were used to discover these tumor associated biomarkers on protein microarrays. Six candidate biomarkers were discovered from 22 heavy chain-only variable region antibody fragments screened. Validation tests are necessary to confirm the tumorgenicity of these antigens. However, the use of single-chain variable autoantibody fragments presents a novel platform for diagnostics and cancer therapeutics.
ContributorsSharman, M. Camila (Author) / Magee, Dewey (Mitch) (Thesis director) / Wallstrom, Garrick (Committee member) / Petritis, Brianne (Committee member) / Barrett, The Honors College (Contributor) / College of Liberal Arts and Sciences (Contributor) / Virginia G. Piper Center for Personalized Diagnostics (Contributor) / Biodesign Institute (Contributor)
Created2012-12
137815-Thumbnail Image.png
Description
Children's literature is a comparatively new concept that has changed as the view of children and childhood has changed. The idea that books written for children are more than just amusement and that these books instill values and pride in one's culture has been approached very differently in the United

Children's literature is a comparatively new concept that has changed as the view of children and childhood has changed. The idea that books written for children are more than just amusement and that these books instill values and pride in one's culture has been approached very differently in the United States and Russia. While there are universal morals and common themes in children's literature, there are just as many culturally-dependent ideals that make children's literature and its translation an enlightening way to study the culture of a people or nation and ease the tensions between emerging global and traditional national lessons in children's literature.
ContributorsZubiate, Rachel (Author) / Moldabekova, Saule (Thesis director) / Hoogenboom, Hilde (Committee member) / Hogue, Cynthia (Committee member) / Barrett, The Honors College (Contributor) / College of Liberal Arts and Sciences (Contributor)
Created2012-12
137821-Thumbnail Image.png
Description
Time spent alone is a topic that has been studied in great detail, particularly the manner in which it is spent and the effect it has during the adolescent stage of life. Similarly, stress levels in adolescents have always been a topic of interest because of the effects they could

Time spent alone is a topic that has been studied in great detail, particularly the manner in which it is spent and the effect it has during the adolescent stage of life. Similarly, stress levels in adolescents have always been a topic of interest because of the effects they could have on the individual later in adulthood. Oddly enough however, the two areas of study have never been looked at in relation to one another. This study will look at different types of alone time as possible stressors in a community sample (N=82) of adolescents transitioning to college. The data on time alone and stress levels was collected through diary reports over a period of 3 days. The analysis only yielded significant effects for females and only for specific categories. It was found that females experience the lowest amount of perceived stress when they are alone and want to be alone, they have more negative affect when their desired environment differs from their current situation, and more positive affect in both the alone incongruence and not alone congruence situations. These results indicate that only women experience stress and affect changes when they encounter different congruent and incongruent environments.
ContributorsVanderwerf, Jennifer (Author) / Doane, Leah (Thesis director) / Knight, George (Committee member) / Arbona, P. Anita (Committee member) / Barrett, The Honors College (Contributor) / College of Liberal Arts and Sciences (Contributor)
Created2012-12
136532-Thumbnail Image.png
Description
Understanding glycosaminoglycans’ (GAG) interaction with proteins is of growing interest for therapeutic applications. For instance, heparin is a GAG exploited for its ability to inhibit proteases, therefore inducing anticoagulation. For this reason, heparin is extracted in mass quantities from porcine intestine in the pharmaceutical field. Following a contamination in 2008,

Understanding glycosaminoglycans’ (GAG) interaction with proteins is of growing interest for therapeutic applications. For instance, heparin is a GAG exploited for its ability to inhibit proteases, therefore inducing anticoagulation. For this reason, heparin is extracted in mass quantities from porcine intestine in the pharmaceutical field. Following a contamination in 2008, alternative sources for heparin are desired. In response, much research has been invested in the extraction of the naturally occurring polysaccharide, heparosan, from Escherichia coli K5 strain. As heparosan contains the same structural backbone as heparin, modifications can be made to produce heparin or heparin-like molecules from this source. Furthermore, isotopically labeled batches of heparosan can be produced to aid in protein-GAG interaction studies. In this study, a comparative look between extraction and purification methods of heparosan was taken. Fed-batch fermentation of this E. coli strain followed by subsequent purification yielded a final 13C/15N labeled batch of 90mg/L of heparosan which was then N-sulfated. Furthermore, a labeled sulfated disaccharide from this batch was utilized in a protein interaction study with CCL5. With NMR analysis, it was found that this heparin-like molecule interacted with CCL5 when its glucosamine residue was in a β-conformation. This represents an interaction reliant on a specific anomericity of this GAG molecule.
ContributorsHoffman, Kristin Michelle (Author) / Wang, Xu (Thesis director) / Cabirac, Gary (Committee member) / Morgan, Ashli (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / School of Life Sciences (Contributor)
Created2015-05
134435-Thumbnail Image.png
Description
Integrin is a protein in cells that manage cell adhesion. They are crucial to the biochemical functions of cells. L 2 is one type of integrin. Its I domain is responsible for ligand binding. Scientists understand how Alpha L I domain binds Mg2+ at a pH of 7 but not

Integrin is a protein in cells that manage cell adhesion. They are crucial to the biochemical functions of cells. L 2 is one type of integrin. Its I domain is responsible for ligand binding. Scientists understand how Alpha L I domain binds Mg2+ at a pH of 7 but not in acidic environments. Knowing the specificity of integrin at a lower pH is important because when tissues become inflamed, they release acidic compounds. We have cloned, expressed, and purified L I-domain and using NMR analysis, we determined that wild type Alpha L I domain does not bind to Mg2+ at a pH of 5.
ContributorsALAM, RAHAT (Author) / Wang, Xu (Thesis director) / Podolnikova, Nataly (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
168732-Thumbnail Image.png
Description
G protein coupled receptors (GPCRs) mediate various of physiologicalactivities which makes them significant drug targets. Determination of atomic level structure of GPCRs facilitates the structure-based drug design. The most widely used method currently for solving GPCR structure is still protein crystallography especially lipidic cubic phase (LCP) crystallization. LCP could mimic the native environment of

G protein coupled receptors (GPCRs) mediate various of physiologicalactivities which makes them significant drug targets. Determination of atomic level structure of GPCRs facilitates the structure-based drug design. The most widely used method currently for solving GPCR structure is still protein crystallography especially lipidic cubic phase (LCP) crystallization. LCP could mimic the native environment of membrane protein which stable the membrane proteins. Traditional synchrotron source requires large size large size protein crystals (>30 micron) due to the radiation damage during data collection. However, acquiring large sized protein crystals is challenging and not guaranteed practically. In this study, a novel method was developed which combined LCP technology and micro-electron diffraction (MicroED) technology. LCP-MicroED technology was able to collect complete diffraction data sets from serval submicron protein crystals and deliver high resolution protein structures. This technology was first confirmed with soluble protein crystals, proteinase K and small molecule crystals, cholesterol. Furthermore, this novel method was applied to a human GPCR target, Î22- adrenergic receptor (Î22AR). The structure model was successfully built which proved the feasibility of applying LCP-MicroED method to GPCRs and other membrane proteins. Besides, in this research, a novel human GPCR target, human histamine 4 receptor(H4R) was studied. Different constructs were expressed, purified, and characterized. Some key residuals that affect ligand binding were confirmed.
ContributorsJing, Liang (Author) / Mazor, Yuval (Thesis advisor) / Mills, Jeremy (Committee member) / Wang, Xu (Committee member) / Arizona State University (Publisher)
Created2022
193621-Thumbnail Image.png
Description
The integrin Mac-1 (αMβ2, CD11b/CD18) is an important adhesion receptorexpressed on macrophages and neutrophils. It plays a crucial role in phagocytosis, cell-cell fusion, and cell migration. αMβ2 is also the most promiscuous integrin with over 100 known ligands that span a broad range of physical and chemical attributes, many of which bind

The integrin Mac-1 (αMβ2, CD11b/CD18) is an important adhesion receptorexpressed on macrophages and neutrophils. It plays a crucial role in phagocytosis, cell-cell fusion, and cell migration. αMβ2 is also the most promiscuous integrin with over 100 known ligands that span a broad range of physical and chemical attributes, many of which bind to the inserted (I) domain from the αM subunit. The interaction of αMI-domain with cytokine pleiotrophin (PTN) were determine. PTN is a cationic protein known to induce Mac-1- mediated adhesion and migration in cells. The data showed that PTN’s interaction with αMI-domain contains both divalent cation-dependent and independent mechanisms. In particular, PTN’s N-terminal domain has weak interactions with the N/C-termini side of αMI-domain using a metal-independent mechanism. However, stronger interaction is achieved through the chelation of the divalent cation in the metal ion-dependent adhesion site of active αMI-domain by PTN’s acidic residues. Although many acidic residues in PTN can act as the chelator, active αMI-domain’s interaction with PTN’s E98 plays an especially important role. NOE, chemical shift perturbation (CSP) data, and mutagenesis studies showed residues near E98 are at the binding interface and the E98 mutation greatly reduced binding affinity between two proteins. Interestingly, the CSP and MD simulation data showed the binding interface can be supported by the interaction of PTN’s H95 with the acidic clusters D242, E244, and D273 from αMI-domain, while PTN’s E66 form electrostatic interaction with R208 and K245 from αMI-domain. The determined recognition motif of αMI-domain for its ligands is (H/R/K)xxE. The ability to accommodate the longer distance between E and (H, R, K) compared to the zwitterionic motif RGDii explained how αMβ2 can interact with a large repertoire of ligands and be versatile in its functional portfolio.
ContributorsNguyen, Hoa Thi Thanh (Author) / Wang, Xu (Thesis advisor) / Van Horn, Wade (Committee member) / Ugarova, Tatiana (Committee member) / Arizona State University (Publisher)
Created2024
156855-Thumbnail Image.png
Description
The physiological phenomenon of sensing temperature is detected by transient

receptor (TRP) ion channels, which are pore forming proteins that reside in the

membrane bilayer. The cold and hot sensing TRP channels named TRPV1 and TRPM8

respectively, can be modulated by diverse stimuli and are finely tuned by proteins and

lipids. PIRT (phosphoinositide interacting

The physiological phenomenon of sensing temperature is detected by transient

receptor (TRP) ion channels, which are pore forming proteins that reside in the

membrane bilayer. The cold and hot sensing TRP channels named TRPV1 and TRPM8

respectively, can be modulated by diverse stimuli and are finely tuned by proteins and

lipids. PIRT (phosphoinositide interacting regulator of TRP channels) is a small

membrane protein that modifies TRPV1 responses to heat and TRPM8 responses to cold.

In this dissertation, the first direct measurements between PIRT and TRPM8 are

quantified with nuclear magnetic resonance and microscale thermophoresis. Using

Rosetta computational biology, TRPM8 is modeled with a regulatory, and functionally

essential, lipid named PIP2. Furthermore, a PIRT ligand screen identified several novel

small molecular binders for PIRT as well a protein named calmodulin. The ligand

screening results implicate PIRT in diverse physiological functions. Additionally, sparse

NMR data and state of the art Rosetta protocols were used to experimentally guide PIRT

structure predictions. Finally, the mechanism of thermosensing from the evolutionarily

conserved sensing domain of TRPV1 was investigated using NMR. The body of work

presented herein advances the understanding of thermosensing and TRP channel function

with TRP channel regulatory implications for PIRT.
ContributorsSisco, Nicholas John (Author) / Van Horn, Wade D (Thesis advisor) / Mills, Jeremy H (Committee member) / Wang, Xu (Committee member) / Yarger, Jeff L (Committee member) / Arizona State University (Publisher)
Created2018
157186-Thumbnail Image.png
Description
Glycosaminoglycans (GAGs) are long chains of negatively charged sulfated polysaccharides. They are often found to be covalently attached to proteins and form proteoglycans in the extracellular matrix (ECM). Many proteins bind GAGs through electrostatic interactions. GAG-binding proteins (GBPs) are involved in diverse physiological activities ranging from bacterial infections to cell-cell/cell-ECM

Glycosaminoglycans (GAGs) are long chains of negatively charged sulfated polysaccharides. They are often found to be covalently attached to proteins and form proteoglycans in the extracellular matrix (ECM). Many proteins bind GAGs through electrostatic interactions. GAG-binding proteins (GBPs) are involved in diverse physiological activities ranging from bacterial infections to cell-cell/cell-ECM contacts. This thesis is devoted to understanding how interactions between GBPs and their receptors modulate biological phenomena. Bacteria express GBPs on surface that facilitate dissemination and colonization by attaching to host ECM. The first GBP investigated in this thesis is decorin binding protein (DBP) found on the surface of Borrelia burgdorferi, causative pathogens in Lyme disease. DBPs bind GAGs of decorin, a proteoglycan in ECM. Of the two isoforms, DBPB is less studied than DBPA. In current work, structure of DBPB from B. burgdorferi and its GAG interactions were investigated using solution NMR techniques. DBPB adopts a five-helical structure, similar to DBPA. Despite similar GAG affinities, DBPB has its primary GAG-binding site on the lysine-rich C terminus, which is different from DBPA. Besides GAGs, GBPs in ECM also interact with cell surface receptors, such as integrins. Integrins belong to a big family of heterodimeric transmembrane proteins that receive extracellular cues and transmit signals bidirectionally to regulate cell adhesion, migration, growth and survival. The second part of this thesis focuses on αM I-domain of the promiscuous integrin αMβ2 (Mac-1 or CD11b/CD18) and explores the structural mechanism of αM I-domain interactions with pleiotrophin (PTN) and platelet factor 4 (PF4), which are cationic proteins with high GAG affinities. After completing the backbone assignment of αM I-domain, paramagnetic relaxation enhancement (PRE) experiments were performed to show that both PTN and PF4 bind αM I-domain using metal ion dependent adhesion site (MIDAS) in an Mg2+ independent way, which differs from the classical Mg2+ dependent mechanism used by all known integrin ligands thus far. In addition, NMR relaxation dispersion analysis revealed unique inherent conformational dynamics in αM I-domain centered around MIDAS and the crucial C-terminal helix. These dynamic motions are potentially functionally relevant and may explain the ligand promiscuity of the receptor, but requires further studies.
ContributorsFeng, Wei (Biologist) (Author) / Wang, Xu (Thesis advisor) / Yarger, Jeff L (Committee member) / Ghirlanda, Giovanna (Committee member) / Arizona State University (Publisher)
Created2019