Matching Items (13)
Filtering by

Clear all filters

136661-Thumbnail Image.png
Description
A series of mitochondria targeting probes was synthesized for the purpose of exploring the feasibility of a mitochondria targeting fluorescent sensor. Of the probes, the probe with a two carbon spacer showed the best co-localization from staining with the established MitoTracker Red® FM, indicating a potential development of the probe

A series of mitochondria targeting probes was synthesized for the purpose of exploring the feasibility of a mitochondria targeting fluorescent sensor. Of the probes, the probe with a two carbon spacer showed the best co-localization from staining with the established MitoTracker Red® FM, indicating a potential development of the probe into mitochondria targeting sensor. However, cytotoxicity was observed for the probe with a six carbon spacer. Three additional mitochondria targeting fluorescent probes of longer spacer groups were synthesized, but the cytotoxicity was not observed to be as high as that of the probe with a two carbon spacer. The cytotoxicity was characterized to be that of caspase dependent cell death. To screen for a possible effect on apoptosis due to the mitochondrial probe, three fluorescent fusion proteins binding the anti-apoptotic proteins were designed and expressed. Each purified fusion protein was then incubated with the cytotoxic mitochondrial probe, and the mixture was isolated by running an affinity column. The fluorescence analysis of eluted fractions showed preliminary data of possible interaction between the protein and the mitochondrial probe.
ContributorsLee, Fred (Author) / Meldrum, Deirdre R. (Thesis director) / Tian, Yanqing (Committee member) / Zhang, Liqiang (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2014-12
136674-Thumbnail Image.png
Description
As prices for fuel along with the demand for renewable resources grow, it becomes of paramount importance to develop new ways of obtaining the energy needed to carry out the tasks we face daily. Costs of production due to energy and time constraints impose severe limitations on what is viable.

As prices for fuel along with the demand for renewable resources grow, it becomes of paramount importance to develop new ways of obtaining the energy needed to carry out the tasks we face daily. Costs of production due to energy and time constraints impose severe limitations on what is viable. Biological systems, on the other hand, are innately efficient both in terms of time and energy by handling tasks at the molecular level. Utilizing this efficiency is at the core of this research. Proper manipulation of even common proteins can render complexes functionalized for specific tasks. In this case, the coupling of a rhenium-based organometallic ligand to a modified myoglobin containing a zinc porphyrin, allow for efficient reduction of carbon dioxide, resulting in energy that can be harnessed and byproducts which can be used for further processing. Additionally, a rhenium based ligand functionalized via biotin is tested in conjunction with streptavidin and ruthenium-bipyridine.
ContributorsAllen, Jason Kenneth (Author) / Ghirlanda, Giovanna (Thesis director) / Francisco, Wilson (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2014-12
136377-Thumbnail Image.png
Description
In this thesis, glycan nodes, the basic subunits of complex biological sugars, were studied to determine the reproducibility of gas chromatography-mass spectrometry (GC/MS) based methylation analysis of whole blood plasma by normalization using an internal standard of heavy permethylated glycans. Glycans are complex biological sugars that have a variety of

In this thesis, glycan nodes, the basic subunits of complex biological sugars, were studied to determine the reproducibility of gas chromatography-mass spectrometry (GC/MS) based methylation analysis of whole blood plasma by normalization using an internal standard of heavy permethylated glycans. Glycans are complex biological sugars that have a variety of applications in the human body and will display aberrant compositions when produced by cancerous cells. Thus an assay to determine their composition can be used as a diagnostic tool. It was shown that the assay may have potential use, but needs further refinement to become an improvement over current methods by analyzing the results of ratio-determination and replicate experiments.
ContributorsMiyasaki, Tyler Takeo (Author) / Borges, Chad (Thesis director) / Van Horn, Wade (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / Chemical Engineering Program (Contributor)
Created2015-05
133722-Thumbnail Image.png
Description
One of the primary bottlenecks to chemical production in biological organisms is the toxicity of the chemical. Overexpression of efflux pumps has been shown to increase tolerance to aromatic compounds such as styrene and styrene oxide. Tight control of pump expression is necessary to maximize titers and prevent excessive strain

One of the primary bottlenecks to chemical production in biological organisms is the toxicity of the chemical. Overexpression of efflux pumps has been shown to increase tolerance to aromatic compounds such as styrene and styrene oxide. Tight control of pump expression is necessary to maximize titers and prevent excessive strain on the cells. This study aimed to identify aromatic-sensitive native promoters and heterologous biosensors for construction of closed-loop control of efflux pump expression in E. coli. Using a promoter library constructed by Zaslaver et al., activation was measured through GFP output. Promoters were evaluated for their sensitivity to the addition of one of four aromatic compounds, their "leaking" of signal, and their induction threshold. Out of 43 targeted promoters, 4 promoters (cmr, mdtG, yahN, yajR) for styrene oxide, 2 promoters (mdtG, yahN) for styrene, 0 promoters for 2-phenylethanol, and 1 promoter for phenol (pheP) were identified as ideal control elements in aromatic bioproduction. In addition, a series of three biosensors (NahR, XylS, DmpR) known to be inducible by other aromatics were screened against styrene oxide, 2-phenylethanol, and phenol. The targeted application of these biosensors is aromatic-induced activation of linked efflux pumps. All three biosensors responded strongly in the presence of styrene oxide and 2-phenylethanol, with minor activation in the presence of phenol. Bioproduction of aromatics continues to gain traction in the biotechnology industry, and the continued discovery of aromatic-inducible elements will be essential to effective pathway control.
ContributorsXu, Jimmy (Author) / Nielsen, David (Thesis director) / Wang, Xuan (Committee member) / School of Life Sciences (Contributor) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134704-Thumbnail Image.png
Description
p-Coumaric acid is used in the food, pharmaceutical, and cosmetic industries due to its versatile properties. While prevalent in nature, harvesting the compound from natural sources is inefficient, requiring large quantities of producing crops and numerous extraction and purification steps. Thus, the large-scale production of the compound is both difficult

p-Coumaric acid is used in the food, pharmaceutical, and cosmetic industries due to its versatile properties. While prevalent in nature, harvesting the compound from natural sources is inefficient, requiring large quantities of producing crops and numerous extraction and purification steps. Thus, the large-scale production of the compound is both difficult and costly. This research aims to produce p-coumarate directly from renewable and sustainable glucose using a co-culture of Yeast and E. Coli. Methods used in this study include: designing optimal media for mixed-species microbial growth, genetically engineering both strains to build the production pathway with maximum yield, and analyzing the presence of p-Coumarate and its pathway intermediates using High Performance Liquid Chromatography (HPLC). To date, the results of this project include successful integration of C4H activity into the yeast strain BY4741 ∆FDC1, yielding a strain that completely consumed trans-cinnamate (initial concentration of 50 mg/L) and produced ~56 mg/L p-coumarate, a resting cell assay of the co-culture that produced 0.23 mM p-coumarate from an initial L-Phenylalanine concentration of 1.14 mM, and toxicity tests that confirmed the toxicity of trans-cinnamate to yeast for concentrations above ~50 mg/L. The hope for this project is to create a feasible method for producing p-Coumarate sustainably.
ContributorsJohnson, Kaleigh Lynnae (Author) / Nielsen, David (Thesis director) / Thompson, Brian (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
134534-Thumbnail Image.png
Description
This research addresses the need for improvement in radiation sensors for applications of ionizing radiation such as radiotherapy. The current sensors involved are polymer gel dosimeters, MOSFETs, radio-chromic films, etc. Most of the sensors involved require expensive equipment's and processing facilities for readout. There is still a need to develo

This research addresses the need for improvement in radiation sensors for applications of ionizing radiation such as radiotherapy. The current sensors involved are polymer gel dosimeters, MOSFETs, radio-chromic films, etc. Most of the sensors involved require expensive equipment's and processing facilities for readout. There is still a need to develop better sensors that can be clinically applied. There are numerous groups around the world trying to conceive a better dosimeter. One of the radiation sensors that was developed recently was based on fluorescence signal emitted from the sensor. To advance the field of radiation sensors, a visual indicator has been developed in-lab as a method of detect ionizing radiation. The intensity of change in color is directly dependent on the amount of incident ionizing radiation. An aqueous gold nanoparticle sensor can be used to accurately determine the incident amount of ionizing radiation1. A gold nanoparticle sensor has been developed in lab with the use of hexadecyltrimethylammonium bromide (C16TAB) as the templating molecule. In the presence of ionizing radiation, the colorless gold salt is reduced and templated, creating a dispersion within the fluid1. The formation of suspended nanoparticles leads to a color change that can be visually detected and accurately analyzed through the employment of a spectrometer. Unfortunately, the toxicity of C16TAB is high. It is expected the toxicity can be reduced by replacing C16TAB with an amino acid, as amino acids can act as templating molecules in the solution and many are naturally occuring2. The experiments included a screening of 20 natural amino acids and 12 unnatural amino acids with the gold salt solution in the presence of ionizing radiation. Stability and absorbance testing was conducted on the amino acid sensors. Additional screening of lead amino acid sensors at various concentrations of irradiation was conducted.
ContributorsGupta, Saumya (Co-author) / Rege, Kaushal (Co-author, Thesis director) / Pushpavanam, Karthik (Co-author, Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
133504-Thumbnail Image.png
Description
Escherichia coli is a bacterium that is used widely in metabolic engineering due to its ability to grow at a fast rate and to be cultured easily. E. coli can be engineered to produce many valuable chemicals, including biofuels and L-Phenylalanine—a precursor to many pharmaceuticals. Significant cell growth occurs in

Escherichia coli is a bacterium that is used widely in metabolic engineering due to its ability to grow at a fast rate and to be cultured easily. E. coli can be engineered to produce many valuable chemicals, including biofuels and L-Phenylalanine—a precursor to many pharmaceuticals. Significant cell growth occurs in parallel to the biosynthesis of the desired biofuel or biochemical product, and limits product concentrations and yields. Stopping cell growth can improve chemical production since more resources will go toward chemical production than toward biomass. The goal of the project is to test different methods of controlling microbial uptake of nutrients, specifically phosphate, to dynamically limit cell growth and improve biochemical production of E. coli, and the research has the potential to promote public health, sustainability, and environment. This can be achieved by targeting phosphate transporter genes using CRISPRi and CRISPR, and they will limit the uptake of phosphate by targeting the phosphate transporter genes in DNA, which will stop transcriptions of the genes. In the experiment, NST74∆crr∆pykAF, a L-Phe overproducer, was used as the base strain, and the pitA phosphate transporter gene was targeted in the CRISPRi and CRISPR systems with the strain with other phosphate transporters knocked out. The tested CRISPRi and CRISPR mechanisms did not stop cell growth or improved L-Phe production. Further research will be conducted to determine the problem of the system. In addition, the CRISPRi and CRISPR systems that target multiple phosphate transporter genes will be tested in the future as well as the other method of stopping transcriptions of the phosphate transporter genes, which is called a tunable toggle switch mechanism.
ContributorsPark, Min Su (Author) / Nielsen, David (Thesis director) / Machas, Michael (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
Description
Styrene, a component of many rubber products, is currently synthesized from petroleum in a highly energy-intensive process. The Nielsen Laboratory at Arizona State has demonstrated a biochemical pathway by which E. coli can be engineered to produce styrene from the amino acid phenylalanine, which E. coli naturally synthesizes from glucose.

Styrene, a component of many rubber products, is currently synthesized from petroleum in a highly energy-intensive process. The Nielsen Laboratory at Arizona State has demonstrated a biochemical pathway by which E. coli can be engineered to produce styrene from the amino acid phenylalanine, which E. coli naturally synthesizes from glucose. However, styrene becomes toxic to E. coli above concentrations of 300 mg/L, severely limiting the large-scale applicability of the pathway. Thus, styrene must somehow be continuously removed from the system to facilitate higher yields and for the purposes of scale-up. The separation methods of pervaporation and solvent extraction were investigated to this end. Furthermore, the styrene pathway was extended by one step to produce styrene oxide, which is less volatile than styrene and theoretically simpler to recover. Adsorption of styrene oxide using the hydrophobic resin L-493 was attempted in order to improve the yield of styrene oxide and to provide additional proof of concept that the flux through the styrene pathway can be increased. The maximum styrene titer achieved was 1.2 g/L using the method of solvent extraction, but this yield was only possible when additional phenylalanine was supplemented to the system.
ContributorsMcDaniel, Matthew Cary (Author) / Nielsen, David (Thesis director) / Lind, Mary Laura (Committee member) / McKenna, Rebekah (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / Chemical Engineering Program (Contributor)
Created2013-05
148490-Thumbnail Image.png
Description

Lignin is a naturally abundant source of aromatic carbon but is largely underutilized in industry because it is difficult to decompose. Under the current study we engineered Corynebacterium glutamicum for the depolymerization of lignin with the goal of using it as raw feed for the sustainable production of valuable chemicals.

Lignin is a naturally abundant source of aromatic carbon but is largely underutilized in industry because it is difficult to decompose. Under the current study we engineered Corynebacterium glutamicum for the depolymerization of lignin with the goal of using it as raw feed for the sustainable production of valuable chemicals. C. glutamicum is a standout candidate for the depolymerization and assimilation of lignin because of its performance as an industrial producer of amino acids, resistance to aromatic compounds in lignin, and low extracellular protease activity. Three different foreign and native ligninolytic enzymes were tested in combination with three signal peptides to assess lignin degradation efficacy. At this stage, six of the nine plasmid constructs have been constructed.

ContributorsEllis, Dylan Scott (Author) / Varman, Arul Mozhy (Thesis director) / Nannenga, Brent (Committee member) / Nowroozi, Farnaz (Committee member) / Chemical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
132166-Thumbnail Image.png
Description
Due to the wide range of health properties flavonoids possess, flavonoids are sold in health supplements to the general public. Flavonoids are also utilized in research but have a high cost due to current production techniques. This project focuses on engineering two DNA recombinants to develop new strains of Corynebacterium

Due to the wide range of health properties flavonoids possess, flavonoids are sold in health supplements to the general public. Flavonoids are also utilized in research but have a high cost due to current production techniques. This project focuses on engineering two DNA recombinants to develop new strains of Corynebacterium glutamicum that can produce flavonoids pinocembrin and naringenin. After culturing Escherichia coli colonies containing genes of interest, the genes were collected and purified by PCR reactions. The recombinant plasmid was assembled using CPEC and successfully transformed into Escherichia coli, with plans to transform Corynebacterium glutamicum to experiment and determine which recombinant can produce more pinocembrin and naringenin. Design work for other DNA recombinants, which were not the focus of this project, was also completed.
ContributorsWong, Adam (Co-author, Co-author) / Varman, Arul Mozhy (Thesis director) / Nielsen, David (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05