Matching Items (3)
Filtering by

Clear all filters

133345-Thumbnail Image.png
Description
The purpose of this study was to observe the effectiveness of the phenylalanyl arginine β-naphthylamide dihydrochloride inhibitor and Tween 20 when combined with an antibiotic against Escherichia. coli. As antibiotic resistance becomes more and more prevalent it is necessary to think outside the box and do more than just increase

The purpose of this study was to observe the effectiveness of the phenylalanyl arginine β-naphthylamide dihydrochloride inhibitor and Tween 20 when combined with an antibiotic against Escherichia. coli. As antibiotic resistance becomes more and more prevalent it is necessary to think outside the box and do more than just increase the dosage of currently prescribed antibiotics. This study attempted to combat two forms of antibiotic resistance. The first is the AcrAB efflux pump which is able to pump antibiotics out of the cell. The second is the biofilms that E. coli can form. By using an inhibitor, the pump should be unable to rid itself of an antibiotic. On the other hand, using Tween allows for biofilm formation to either be disrupted or for the biofilm to be dissolved. By combining these two chemicals with an antibiotic that the efflux pump is known to expel, low concentrations of each chemical should result in an equivalent or greater effect on bacteria compared to any one chemical in higher concentrations. To test this hypothesis a 96 well plate BEC screen test was performed. A range of antibiotics were used at various concentrations and with varying concentrations of both Tween and the inhibitor to find a starting point. Following this, Erythromycin and Ciprofloxacin were picked as the best candidates and the optimum range of the antibiotic, Tween, and inhibitor were established. Finally, all three chemicals were combined to observe the effects they had together as opposed to individually or paired together. From the results of this experiment several conclusions were made. First, the inhibitor did in fact increase the effectiveness of the antibiotic as less antibiotic was needed if the inhibitor was present. Second, Tween showed an ability to prevent recovery in the MBEC reading, showing that it has the ability to disrupt or dissolve biofilms. However, Tween also showed a noticeable decrease in effectiveness in the overall treatment. This negative interaction was unable to be compensated for when using the inhibitor and so the hypothesis was proven false as combining the three chemicals led to a less effective treatment method.
ContributorsPetrovich Flynn, Chandler James (Author) / Misra, Rajeev (Thesis director) / Bean, Heather (Committee member) / Perkins, Kim (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134374-Thumbnail Image.png
Description
The prrAB two-component system has been shown to be essential for viability in Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis. To study this system, several prrAB mutants of Mycobacterium smegmatis, a close relative of Mtb, were created for study. These mutants included a deletion mutant complemented with prrA from

The prrAB two-component system has been shown to be essential for viability in Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis. To study this system, several prrAB mutants of Mycobacterium smegmatis, a close relative of Mtb, were created for study. These mutants included a deletion mutant complemented with prrA from Mtb controlled by Pmyc1_tetO, a deletion mutant, and a deletion mutant complemented with prrAB from M. smegmatis controlled by the native prrAB promoter sequence (~167 bp upstream sequence of prrAB). In a previous study, the prrAB deletion mutant clumped excessively relative to the wild-type strain when cultured in a nitrogen-limited medium. To address this irregularity, the lipid profiles of these mutants were analyzed through several experimental methods. Untargeted lipidomic profiles were analyzed by Electrospray Ionization Mass Spectrometry (ESI-MS). The ESI-MS data suggested the deletion mutant accumulates triacylglycerol species relative to the wild-type strain. This data was verified by thin-layer chromatography (TLC) and densitometry of the TLC images. The mycolic acid profile of each mutant was also analyzed by TLC but no noteworthy differences were found. High-throughput RNA-Seq analysis revealed several genes involved in lipid biosynthetic pathways upregulated in the prrAB deletion mutant, thus corroborating the ESI-MS and TLC data.
ContributorsOlson, Alexandra Nadine (Author) / Haydel, Shelley (Thesis director) / Bean, Heather (Committee member) / Maarsingh, Jason (Committee member) / School of Social Transformation (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
132599-Thumbnail Image.png
Description
When limited for iron, Escherichia coli secretes a siderophore, enterobactin, to solubilize and intake extracellular Fe3+ by a TonB-dependent high-affinity pathway. Consequently, E. coli tonB mutants grow poorly on a medium limited for iron. Upon longer incubation, however, faster growing colonies emerge and overcome this growth defect. The work presented

When limited for iron, Escherichia coli secretes a siderophore, enterobactin, to solubilize and intake extracellular Fe3+ by a TonB-dependent high-affinity pathway. Consequently, E. coli tonB mutants grow poorly on a medium limited for iron. Upon longer incubation, however, faster growing colonies emerge and overcome this growth defect. The work presented in this paper reports and characterizes these faster growing colonies (revertants) in an attempt to dissect the mechanism by which they overcome the TonB deficiency. Genomic analysis revealed mutations in yejM, a putative inner-to-outer membrane cardiolipin transporter, which are responsible for the faster growth phenotype in a tonB mutant background. Further characterization of the revertants revealed that they display hypersensitivity to vancomycin, a large antibiotic that is normally precluded from entering E. coli cells, and leaked periplasmic proteins into the culture supernatant, indicating a compromised outer membrane permeability barrier. All phenotypes were reversed by supplying the wild type copy of yejM on a plasmid, suggesting that yejM mutations are solely responsible for the observed phenotypes. In the absence of wild type tonB, however, the deletion of all known of cardiolipin synthase genes (clsABC) did not produce the phenotype similar to mutations in the yejM gene, suggesting the absence of cardiolipin from the outer membrane per se is not responsible for the increased outer membrane permeability. These data show that a defect in lipid biogenesis and transport can compromise outer membrane permeability barrier to allow siderophore intake and that YejM may have additional roles other than transporting cardiolipin.
ContributorsQiu, Nan (Author) / Misra, Rajeev (Thesis director) / Bean, Heather (Committee member) / Yu, Julian (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05