Matching Items (2)
Filtering by

Clear all filters

157426-Thumbnail Image.png
Description
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, is the 10th leading cause of death, worldwide. The prevalence of drug-resistant clinical isolates and the paucity of newly-approved antituberculosis drugs impedes the successful eradication of Mtb. Bacteria commonly use two-component systems (TCS) to sense their environment and genetically modulate adaptive responses.

Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, is the 10th leading cause of death, worldwide. The prevalence of drug-resistant clinical isolates and the paucity of newly-approved antituberculosis drugs impedes the successful eradication of Mtb. Bacteria commonly use two-component systems (TCS) to sense their environment and genetically modulate adaptive responses. The prrAB TCS is essential in Mtb, thus representing an auspicious drug target; however, the inability to generate an Mtb ΔprrAB mutant complicates investigating how this TCS contributes to pathogenesis. Mycobacterium smegmatis, a commonly used M. tuberculosis genetic surrogate was used here. This work shows that prrAB is not essential in M. smegmatis. During ammonium stress, the ΔprrAB mutant excessively accumulates triacylglycerol lipids, a phenotype associated with M. tuberculosis dormancy and chronic infection. Additionally, triacylglycerol biosynthetic genes were induced in the ΔprrAB mutant relative to the wild-type and complementation strains during ammonium stress. Next, RNA-seq was used to define the M. smegmatis PrrAB regulon. PrrAB regulates genes participating in respiration, metabolism, redox balance, and oxidative phosphorylation. The M. smegmatis ΔprrAB mutant is compromised for growth under hypoxia, is hypersensitive to cyanide, and fails to induce high-affinity respiratory genes during hypoxia. Furthermore, PrrAB positively regulates the hypoxia-responsive dosR TCS response regulator, potentially explaining the hypoxia-mediated growth defects in the ΔprrAB mutant. Despite inducing genes encoding the F1F0 ATP synthase, the ΔprrAB mutant accumulates significantly less ATP during aerobic, exponential growth compared to the wild-type and complementation strains. Finally, the M. smegmatis ΔprrAB mutant exhibited growth impairment in media containing gluconeogenic carbon sources. M. tuberculosis mutants unable to utilize these substrates fail to establish chronic infection, suggesting that PrrAB may regulate Mtb central carbon metabolism in response to chronic infection. In conclusion, 1) prrAB is not universally essential in mycobacteria; 2) M. smegmatis PrrAB regulates genetic responsiveness to nutrient and oxygen stress; and 3) PrrAB may provide feed-forward control of the DosRS TCS and dormancy phenotypes. The data generated in these studies provide insight into the mycobacterial PrrAB TCS transcriptional regulon, PrrAB essentiality in Mtb, and how PrrAB may mediate stresses encountered by Mtb during the transition to chronic infection.
ContributorsMaarsingh, Jason (Author) / Haydel, Shelley E (Thesis advisor) / Roland, Kenneth (Committee member) / Sandrin, Todd (Committee member) / Bean, Heather (Committee member) / Arizona State University (Publisher)
Created2019
134374-Thumbnail Image.png
Description
The prrAB two-component system has been shown to be essential for viability in Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis. To study this system, several prrAB mutants of Mycobacterium smegmatis, a close relative of Mtb, were created for study. These mutants included a deletion mutant complemented with prrA from

The prrAB two-component system has been shown to be essential for viability in Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis. To study this system, several prrAB mutants of Mycobacterium smegmatis, a close relative of Mtb, were created for study. These mutants included a deletion mutant complemented with prrA from Mtb controlled by Pmyc1_tetO, a deletion mutant, and a deletion mutant complemented with prrAB from M. smegmatis controlled by the native prrAB promoter sequence (~167 bp upstream sequence of prrAB). In a previous study, the prrAB deletion mutant clumped excessively relative to the wild-type strain when cultured in a nitrogen-limited medium. To address this irregularity, the lipid profiles of these mutants were analyzed through several experimental methods. Untargeted lipidomic profiles were analyzed by Electrospray Ionization Mass Spectrometry (ESI-MS). The ESI-MS data suggested the deletion mutant accumulates triacylglycerol species relative to the wild-type strain. This data was verified by thin-layer chromatography (TLC) and densitometry of the TLC images. The mycolic acid profile of each mutant was also analyzed by TLC but no noteworthy differences were found. High-throughput RNA-Seq analysis revealed several genes involved in lipid biosynthetic pathways upregulated in the prrAB deletion mutant, thus corroborating the ESI-MS and TLC data.
ContributorsOlson, Alexandra Nadine (Author) / Haydel, Shelley (Thesis director) / Bean, Heather (Committee member) / Maarsingh, Jason (Committee member) / School of Social Transformation (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05