Matching Items (42)
Filtering by

Clear all filters

136532-Thumbnail Image.png
Description
Understanding glycosaminoglycans’ (GAG) interaction with proteins is of growing interest for therapeutic applications. For instance, heparin is a GAG exploited for its ability to inhibit proteases, therefore inducing anticoagulation. For this reason, heparin is extracted in mass quantities from porcine intestine in the pharmaceutical field. Following a contamination in 2008,

Understanding glycosaminoglycans’ (GAG) interaction with proteins is of growing interest for therapeutic applications. For instance, heparin is a GAG exploited for its ability to inhibit proteases, therefore inducing anticoagulation. For this reason, heparin is extracted in mass quantities from porcine intestine in the pharmaceutical field. Following a contamination in 2008, alternative sources for heparin are desired. In response, much research has been invested in the extraction of the naturally occurring polysaccharide, heparosan, from Escherichia coli K5 strain. As heparosan contains the same structural backbone as heparin, modifications can be made to produce heparin or heparin-like molecules from this source. Furthermore, isotopically labeled batches of heparosan can be produced to aid in protein-GAG interaction studies. In this study, a comparative look between extraction and purification methods of heparosan was taken. Fed-batch fermentation of this E. coli strain followed by subsequent purification yielded a final 13C/15N labeled batch of 90mg/L of heparosan which was then N-sulfated. Furthermore, a labeled sulfated disaccharide from this batch was utilized in a protein interaction study with CCL5. With NMR analysis, it was found that this heparin-like molecule interacted with CCL5 when its glucosamine residue was in a β-conformation. This represents an interaction reliant on a specific anomericity of this GAG molecule.
ContributorsHoffman, Kristin Michelle (Author) / Wang, Xu (Thesis director) / Cabirac, Gary (Committee member) / Morgan, Ashli (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / School of Life Sciences (Contributor)
Created2015-05
136242-Thumbnail Image.png
Description
The transition from high school to college is, for many, a drastic change in lifestyle, social networks, and dietary choices. The prevalence of obesity in college students has been steadily increasing. Freshmen weight gains have been associated with a decrease in fruits and vegetables and an increase in unhealthy items

The transition from high school to college is, for many, a drastic change in lifestyle, social networks, and dietary choices. The prevalence of obesity in college students has been steadily increasing. Freshmen weight gains have been associated with a decrease in fruits and vegetables and an increase in unhealthy items such as desserts, alcohol, and late night snacking after dinner. A survey of college students was constructed to gauge students' perceptions of nutrition how these perceptions influenced dietary practices and behaviors. Survey results indicated that awareness of nutrition and health does not translate to dietary practices, aligning with results from previous studies. Several sex differences were noted in regards to dietary choices and perceptions, knowledge seeking behavior, and sources of information. While there were some similarities, it is clear from the results obtained that men and women have different approaches and thoughts with regard to nutrition. The results showed that college students who actively seek our nutritional information are more likely to do so in the form of social media or Internet sources. This study could be useful for those planning on conducting college-based nutritional programs in that the results indicate patterns and trends that should be taken into consideration in order for a successful nutrition intervention
ContributorsKeahon, Gabriela Estrada (Author) / Jehn, Megan (Thesis director) / Williams, Deborah (Committee member) / Barrett, The Honors College (Contributor) / School of Human Evolution and Social Change (Contributor) / School of Life Sciences (Contributor) / School for the Science of Health Care Delivery (Contributor)
Created2015-05
137222-Thumbnail Image.png
Description
The NCAA recently declared sickle cell trait (SCT) to be a risk factor for sudden illness and death among student athletes. Fetal hemoglobin (HbF) concentration in adults is negatively correlated with disease severity in sickle cell anemia, although its effect on SCT is not fully understood and the concentration is

The NCAA recently declared sickle cell trait (SCT) to be a risk factor for sudden illness and death among student athletes. Fetal hemoglobin (HbF) concentration in adults is negatively correlated with disease severity in sickle cell anemia, although its effect on SCT is not fully understood and the concentration is found to have high variability across populations. Two single nucleotide polymorphisms (SNPs) at the human beta globin gene cluster, rs7482144 and rs10128556, contribute to the heritable variation in HbF levels and are associated with increased HbF concentrations in adults. A sample population of NCAA football student athletes was genotyped for these two polymorphisms, and their allele frequencies were compared to those of other populations. The minor allele of both polymorphisms had allele frequencies of 0.091 in the sample population, which compared closely with other populations of recent African heritage but was significantly different from European populations. The results of this study will be included in a larger study to predict whether these among other polymorphisms can be used as markers to predict susceptibility to heat-related emergencies in NCAA student athletes with SCT, although the small sample size will delay this process until participation in the study increases. Since both rs7482144 and rs10128556 exhibit high levels of linkage disequilibrium, and as their contributions to the heritable variability of HbF concentrations tend to differ greatly between populations of different ancestry, further investigations should be aimed at distinguishing between the effects of each SNP in African American, European, and other populations represented in NCAA football before conclusions can be drawn as to their practical use as genetic markers of heat susceptibility in student athletes with SCT.
ContributorsGrieger, Ryan Wayne (Author) / Stone, Anne C. (Thesis director) / Rosenberg, Michael (Committee member) / Madrigal, Lorena (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2014-05
137273-Thumbnail Image.png
Description
Protein AMPylation is a recently discovered and relatively unstudied post-translational modification (PTM). AMPylation has previously been shown to play an important role in metabolic regulation and host pathogenesis in bacteria, but the recent identification of potential AMPylators across many species in every domain of life has supported the possibility that

Protein AMPylation is a recently discovered and relatively unstudied post-translational modification (PTM). AMPylation has previously been shown to play an important role in metabolic regulation and host pathogenesis in bacteria, but the recent identification of potential AMPylators across many species in every domain of life has supported the possibility that AMPylation could be a more fundamental and physiologically significant regulatory PTM. For the first time, we characterized the auto-AMPylation capability of the human protein SOS1 through in vitro AMPylation experiments using full-length protein and whole-domain truncation mutants. We found that SOS1 can become AMPylated at a tyrosine residue possibly within the Cdc25 domain of the protein, the Dbl homology domain is vital for efficient auto-AMPylation activity, and the C-terminal proline-rich domain exhibits a complex regulatory function. The proline-rich domain alone also appears to be capable of catalyzing a separate, unidentified covalent self-modification using a fluorescent ATP analogue. Finally, SOS1 was shown to be capable of catalyzing the AMPylation of two endogenous human protein substrates: a ubiquitous, unidentified protein of ~49kDa and another breast-cancer specific, unidentified protein of ~28kDa.
ContributorsOber-Reynolds, Benjamin John (Author) / LaBaer, Joshua (Thesis director) / Borges, Chad (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of Life Sciences (Contributor)
Created2014-05
137546-Thumbnail Image.png
Description
In vitro measurements of cellular respiration have proven to be key biomarkers for the early onset of tumor formation in certain pathological mechanisms.1 The examination of isolated single cells has shown promise in predicting the onset of cancerous growth much earlier than current methods allow.2 Specifically, measurements of the oxygen

In vitro measurements of cellular respiration have proven to be key biomarkers for the early onset of tumor formation in certain pathological mechanisms.1 The examination of isolated single cells has shown promise in predicting the onset of cancerous growth much earlier than current methods allow.2 Specifically, measurements of the oxygen consumption rates of precancerous cells have elucidated outliers which predict the early onset of esophageal cancer.2 Single cell profiling can fit in to current pathology studies and can serve as a step along the way, much like PCR or gel assays, in detecting biomarkers earlier than current clinical methods.3 Measurement of these single cell metabolic rates is currently limited to 25 cells per experiment. It is the aim of this project to increase throughput from 25 cells to 225 cells per experiment via the implementation of new hardware and software which fit with current methods to allow the same experimental structure. Successful implementation of such methods will allow for more rapid and efficient data collection, facilitating quantitative results and nine times the yield from the same experimental manpower and funding. This document focuses on the implementation ultra high density (UHD) hardware consisting of a pneumatic molar design, angular adjustment features and a mechanical Z-stage. These components have produced the most encouraging results thus far and are the key changes in transitioning to higher throughput experiments.
ContributorsUeberroth, Benjamin Edward (Author) / Kelbauskas, Laimonas (Thesis director) / Ashili, Shashanka (Committee member) / Myers, Jakrey (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of Life Sciences (Contributor)
Created2013-05
136921-Thumbnail Image.png
Description
Photosynthesis is a critical process that fixes the carbon utilized in cellular respiration. In higher plants, the immutans gene codes for a protein that is both involved in carotenoid biosynthesis and plastoquinol oxidation (Carol et al 1999, Josse et al 2003). This plastoquinol terminal oxidase (PTOX) is of great interest

Photosynthesis is a critical process that fixes the carbon utilized in cellular respiration. In higher plants, the immutans gene codes for a protein that is both involved in carotenoid biosynthesis and plastoquinol oxidation (Carol et al 1999, Josse et al 2003). This plastoquinol terminal oxidase (PTOX) is of great interest in understanding electron flow in the plastoquinol pool. In order to characterize this PTOX, polyclonal antibodies were developed. Expression of Synechococcus WH8102 PTOX in E. coli provided a useful means to harvest the protein required for antibody production. Once developed, the antibody was tested for limit of concentration, effectiveness in whole cell lysate, and overall specificity. The antibody raised against PTOX was able to detect as low as 10 pg of PTOX in SDS-PAGE, and could detect PTOX extracted from lysed Synechococcus WH8102. The production of this antibody could determine the localization of the PTOX in Synechococcus.
ContributorsKhan, Mohammad Iqbal (Author) / Moore, Thomas (Thesis director) / Redding, Kevin (Committee member) / Roberson, Robert (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of Life Sciences (Contributor)
Created2014-05
136890-Thumbnail Image.png
Description
Protein is an essential macronutrient in the human diet, but the source of this protein has both human health and environmental impacts. Health complications can result from protein deficiency, but the practices by which protein sources are raised, grown, or harvested have environmental consequences, potentially reducing biodiversity, essential habitat, and

Protein is an essential macronutrient in the human diet, but the source of this protein has both human health and environmental impacts. Health complications can result from protein deficiency, but the practices by which protein sources are raised, grown, or harvested have environmental consequences, potentially reducing biodiversity, essential habitat, and crucial stocks of natural resources. Terrestrial cultivation encroaches on natural habitats and consumes resources inefficiently, while overfishing has greatly depleted wild fishery stocks. These environmental factors, along with concerns about nutrients, contaminants and the ethics of animal protein has led to confusion about weighing the risks and benefits associated with alternative sources of protein. Providing consumers \u2014 and policy makers \u2014 with a comprehensive account of major protein sources and their impacts in an understandable form is crucial to reducing environmental degradation and improving human health. Here I provide a general framework to compare the health and environmental impacts of livestock, seafood, and plant protein, and illustrate the application of this framework with case studies for each of these categories.
ContributorsGeren, Sarah Lindsey (Author) / Gerber, Leah (Thesis director) / Smith, Andrew (Committee member) / Minteer, Ben (Committee member) / Barrett, The Honors College (Contributor) / School of Human Evolution and Social Change (Contributor) / School of Life Sciences (Contributor)
Created2014-05
135241-Thumbnail Image.png
Description
Tai Chi Chuan is an internal Chinese martial arts that practitioners believe provide will provide health benefits. This thesis attempts to summarize and analyze scientific studies that test Tai Chi Chuan as a therapeutic exercise. Systemic reviews and meta-analysis were included were based on the following criteria: studied Tai Chi

Tai Chi Chuan is an internal Chinese martial arts that practitioners believe provide will provide health benefits. This thesis attempts to summarize and analyze scientific studies that test Tai Chi Chuan as a therapeutic exercise. Systemic reviews and meta-analysis were included were based on the following criteria: studied Tai Chi Chuan in context of a specific disease, must include random control trials, and statistical analysis. Overall, Tai Chi Chuan studies portray the martial art as a low intensity exercise with numerous health benefits in pain management, emotional health, fall prevention, cardiopulmonary and cognitive function.
ContributorsTsai, Andrew Roy (Author) / Capco, David (Thesis director) / Tillman, Hoyt (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
133055-Thumbnail Image.png
Description
Asthma is one of the most common chronic diseases affecting children, and investigators have identified a number of risk factors that worsen asthma symptoms. Most prior studies have concluded that there is an association between one risk factor, poor sleep quality, and asthma; however, whether sleep quality predicts future asthma

Asthma is one of the most common chronic diseases affecting children, and investigators have identified a number of risk factors that worsen asthma symptoms. Most prior studies have concluded that there is an association between one risk factor, poor sleep quality, and asthma; however, whether sleep quality predicts future asthma symptoms, asthma symptoms predict future sleep quality, or the relation is reciprocal is still unclear. The methodology of studies examining the asthma-sleep association has consisted of actigraphy and parent report to determine children's sleep duration and sleep efficiency, and lung function assessments with a spirometer on the participants to determine children's overall lung function. The purpose of the proposed study is to determine the strength of the cross-sectional and longitudinal associations between indicators of sleep quality and asthma. The proposed study plans to use a combination of actigraphy, sleep diaries, and lung function assessments using a spirometer to determine sleep quality and lung function, respectively. Future directions include determining the directionality of the association between sleep quality and asthma as well as strength of association.
ContributorsLacy, Kordell Reggie (Author) / Davis, Mary (Thesis director) / Miadich, Samantha (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
133245-Thumbnail Image.png
Description
The major goal of this large project is to develop a Recognition Tunneling Nanopore (RTP) device that will be used for determining the structure of glycosaminoglycans (GAGs). The RTP device is composed of a recognition tunneling junction that is embedded in a nanopore. In order to translocate the GAG molecule

The major goal of this large project is to develop a Recognition Tunneling Nanopore (RTP) device that will be used for determining the structure of glycosaminoglycans (GAGs). The RTP device is composed of a recognition tunneling junction that is embedded in a nanopore. In order to translocate the GAG molecule through the nanopore, researchers have designed a scheme in which the GAG molecule of interest will be attached to the 5’ end of a DNA primer (figure 1) and the DNA primer will be extended by a biotinylated Φ29 DNA polymerase that is anchored in the nanoslit using streptavidin. This research project specifically is part of a larger project with the main goal of comparing the activity of the wild-type Φ29 DNA polymerase which I have expressed and purified with the mutated Φ29 DNA polymerase devoid of 3’ - 5’ exonuclease activity which was made by Dr. Deng.
ContributorsDadkhah Tirani, Farbod (Author) / Wang, Xu (Thesis director) / Zhang, Peiming (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05