Matching Items (1)
Filtering by

Clear all filters

Description
Membrane proteins act as sensors, gatekeepers and information carriers in the cell membranes. Functional engineering of these proteins is important for the development of molecular tools for biosensing, therapeutics and as components of artificial cells. However, using protein engineering to modify existing protein structures is challenging due to the limitations

Membrane proteins act as sensors, gatekeepers and information carriers in the cell membranes. Functional engineering of these proteins is important for the development of molecular tools for biosensing, therapeutics and as components of artificial cells. However, using protein engineering to modify existing protein structures is challenging due to the limitations of structural changes and difficulty in folding polypeptides into defined protein structures. Recent studies have shown that nanoscale architectures created by DNA nanotechnology can be used to mimic various protein functions, including some membrane proteins. However, mimicking the highly sophisticated structural dynamics of membrane proteins by DNA nanostructures is still in its infancy, mainly due to lack of transmembrane DNA nanostructures that can mimic the dynamic behavior, ubiquitous to membrane proteins. Here, I demonstrate design of dynamic DNA nanostructures to mimic two important class of membrane proteins. First, I describe a DNA nanostructure that inserts through lipid membrane and dynamically reconfigures upon sensing a membrane-enclosed DNA or RNA target, thereby transducing biomolecular information across the lipid membrane similar to G-protein coupled receptors (GPCR’s). I use the non-destructive sensing property of our GPCR-mimetic nanodevice to sense cancer associated micro-RNA biomarkers inside exosomes without the need of RNA extraction and amplification. Second, I demonstrate a fully reversibly gated DNA nanopore that mimics the ligand mediated gating of ion channel proteins. The 20.4 X 20.4 nm-wide channel of the DNA nanopore allows timed delivery of folded proteins across synthetic and biological membranes. These studies represent early examples of dynamic DNA nanostructures in mimicking membrane protein functions. I envision that they will be used in synthetic biology to create artificial cells containing GPCR-like and ion channel-like receptors, in site-specific drug or vaccine delivery and highly sensitive biosensing applications.
ContributorsDey, Swarup (Author) / Yan, Hao (Thesis advisor) / Hariadi, Rizal F (Thesis advisor) / Liu, Yan (Committee member) / Stephanopoulos, Nicholas (Committee member) / Arizona State University (Publisher)
Created2021