Matching Items (10)
Filtering by

Clear all filters

136556-Thumbnail Image.png
Description
Due to the environmental problems caused by global warming, it has become necessary to reduce greenhouse gas emissions across the planet. Biofuels, such as ethanol, have proven to release cleaner emissions when combusted. However, large scale production of these alcohols is uneconomical and inefficient due to limitations in standard separation

Due to the environmental problems caused by global warming, it has become necessary to reduce greenhouse gas emissions across the planet. Biofuels, such as ethanol, have proven to release cleaner emissions when combusted. However, large scale production of these alcohols is uneconomical and inefficient due to limitations in standard separation processes, the most common being distillation. Pervaporation is a novel separation technique that utilizes a specialized membrane to separate multicomponent solutions. In this research project, pervaporation utilizing ZIF-71/PDMS mixed matrix membranes are investigated to see their ability to recover ethanol from an ethanol/aqueous separation. Membranes with varying nanoparticle concentrations were created and their performances were analyzed. While the final results indicate that no correlation exists between nanoparticle weight percentage and selectivity, this technology is still a promising avenue for biofuel production. Future work will be conducted to improve this existing process and enhance membrane selectivity.
ContributorsHoward, Chelsea Elizabeth (Author) / Lind, Mary Laura (Thesis director) / Nielsen, David (Committee member) / Greenlee, Lauren (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor) / Materials Science and Engineering Program (Contributor)
Created2015-05
136885-Thumbnail Image.png
Description
Lithium-ion batteries are one of the most widely used energy storage solutions today. As renewable energy sources proliferate to meet growth in worldwide energy consumption, it is important that lithium-ion batteries be improved to help capture this energy for use when the demand arises. One way to boost the performance

Lithium-ion batteries are one of the most widely used energy storage solutions today. As renewable energy sources proliferate to meet growth in worldwide energy consumption, it is important that lithium-ion batteries be improved to help capture this energy for use when the demand arises. One way to boost the performance of lithium-ion batteries is to replace the electrode active materials with materials of higher specific capacity. Silicon is one material that has been widely touted as a potential replacement for the graphite used in commercial anodes with a theoretical capacity of 3500 mAh/g as opposed to graphite's 372 mAh/g. However, bulk silicon is known to pulverize after experiencing large strains during lithiation. Here, silicon clathrates are investigated as a potential structure for accommodation of these strains. Silicon clathrates consist of covalently bonded silicon host cages surrounding a guest alkali or alkaline earth metal ion. Previous work has looked at silicon clathrates for their superconducting and thermoelectric properties. In this study, electrochemical properties of type I and II silicon clathrates with sodium guest ions (NaxSi46 and NaxSi136) and type I silicon clathrates with copper framework substitution and barium guest ions (Ba8CuxSi46-x) are examined. Sodium clathrates showed very high capacities during initial lithiation (>2500 mAh/g), but rapidly lost capacity thereafter. X-ray diffraction after lithiation showed conversion of the clathrate phase to lithium silicide and then to amorphous silicon after delithiation, indicating destruction of the clathrate structure as a possible explanation for the rapid capacity fade. Ba8CuxSi46-x clathrates were found to have their structures completely intact after 50 cycles. However, they had very low reversible capacities (<100 mAh/g) and potentially might not be electrochemically active. Further work is needed to better understand exactly how lithium is inserted into clathrates and if copper impurities detected during wavelength-dispersive X-ray spectroscopy could be inhibiting lithium transport into the clathrates.
ContributorsWagner, Nicholas Adam (Author) / Chan, Candace (Thesis director) / Sieradzki, Karl (Committee member) / Barrett, The Honors College (Contributor) / Materials Science and Engineering Program (Contributor)
Created2014-05
Description
Acute Kidney Injury (AKI) may be detected through biomarkers in urine. This research is being done to develop a membrane for use in separating urine biomarkers to monitor their level. A hydrophobic membrane was treated to improve separation of the desired biomarker for colorimetric sensing. This method was tested with

Acute Kidney Injury (AKI) may be detected through biomarkers in urine. This research is being done to develop a membrane for use in separating urine biomarkers to monitor their level. A hydrophobic membrane was treated to improve separation of the desired biomarker for colorimetric sensing. This method was tested with model solutions containing the biomarker. Future work will extend to testing with real urine.
ContributorsBrown, Stephanie Ann (Author) / Lind, Mary Laura (Thesis director) / Yin, Huidan (Committee member) / Materials Science and Engineering Program (Contributor) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134670-Thumbnail Image.png
Description
Zeolite thin films and membranes are currently a promising technology for pervaporation, gas separation and water purification. The main drawback with these technologies is that the synthesis is not consistent leading to varied and unreproducible results. The Langmuir-Blodgett technique is a robust method for transferring monolayers of molecules or crystals

Zeolite thin films and membranes are currently a promising technology for pervaporation, gas separation and water purification. The main drawback with these technologies is that the synthesis is not consistent leading to varied and unreproducible results. The Langmuir-Blodgett technique is a robust method for transferring monolayers of molecules or crystals to a solid substrate. By measuring the surface pressure and controlling the area, reliable results can be achieved by transferring monolayers to different solid substrates. It has been shown previously that various types of zeolites can be functionalized and dispersed on the top of water. This is done by using an alcohol to form a hydrophobic coating on the surface of zeolite. The Langmuir-Blodgett can be used to create thin, compact films of zeolites for synthesizing and growing zeolite films. For the first reported time, cubic LTA Zeolites monolayers have been assembled with the Langmuir-Blodgett technique with multiple solvents and different sizes of zeolites. These films were characterized with Scanning Electron Microscopy and Pressure-Area Isotherms generated from the Langmuir-Blodgett. It was found that linoleic acid is a required addition to the zeolite dispersions to protect the mechanical stability during agitation. Without this addition, the LTA zeolites are broken apart and lose their characteristic cubic structure. This effect is discussed and a theory is presented that the interparticle interactions of the long alkane chain of the linoleic acid help reduce the shear stress on the individual zeolite particles, thus preventing them from being broken. The effect of size of the zeolites on the monolayer formation was also discussed. There seemed to be little correlation between the monolayer quality and formation as size was changed. However, to optimize the process, different concentrations and target pressures are needed. Lastly, the effect of the solvent was explored and it was found that there is a different between monolayer formations for different solvents likely due to differing interparticle interactions. Overall, LTA zeolites were successfully fabricated and the important factors to consider are the zeolite size, the solvent, and the amount of surfactant stabilizer added.
ContributorsDopilka, Andrew Michael (Author) / Lind, Mary Laura (Thesis director) / Cay, Pinar (Committee member) / Materials Science and Engineering Program (Contributor) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
134935-Thumbnail Image.png
Description
The main objective of this project is to create a hydrogel based material system to capture and release CCRF-CEM Leukemia cancer cells via chemo-mechanical modulation. This system is composed of an aptamer-functionalized hydrogel thin film at the bottom of a microfluidic channel, which changes its film thickness as the temperature

The main objective of this project is to create a hydrogel based material system to capture and release CCRF-CEM Leukemia cancer cells via chemo-mechanical modulation. This system is composed of an aptamer-functionalized hydrogel thin film at the bottom of a microfluidic channel, which changes its film thickness as the temperature of the fluid in the system changes. The functionalized hydrogel film has been created as the primary steps to creating the microfluidic device that could capture and release leukemia cells by turning the temperature of the fluid and length of exposure. Circulating tumor cells have recently become a highly studied area since they have become associated with the likelihood of patient survival. Further, circulating tumor cells can be used to determine changes in the genome of the cancer leading to targeted treatment. First, the aptamers were attached onto the hydrogel through an EDC/NHS reaction. The aptamers were verified to be attached onto the hydrogel through FTIR spectroscopy. The cell capture experiments were completed by exposing the hydrogel to a solution of leukemia cells for 10 minutes at room temperature. The cell release experiments were completed by exposing the hydrogel to a 40°C solution. Several capture and release experiments were completed to measure how many cells could be captured, how quickly, and how many cells captured were released. The aptamers were chemically attached to the hydrogel. 300 cells per square millimeter could be captured at a time in a 10 minute time period and released in a 5 minute period. Of the cells captured, 96% of them were alive once caught. 99% of cells caught were released once exposed to elevated temperature. The project opens the possibility to quickly and efficiently capture and release tumor cells using only changes in temperature. Further, most of the cells that were captured were alive and nearly all of those were released leading to high survival and capture efficiency.
ContributorsPaxton, Rebecca Joanne (Author) / Stephanopoulos, Nicholas (Thesis director) / He, Ximin (Committee member) / Gould, Ian (Committee member) / Materials Science and Engineering Program (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
134902-Thumbnail Image.png
Description
Metal-organic frameworks (MOFs) are a new set of porous materials comprised of metals or metal clusters bonded together in a coordination system by organic linkers. They are becoming popular for gas separations due to their abilities to be tailored toward specific applications. Zirconium MOFs in particular are known for their

Metal-organic frameworks (MOFs) are a new set of porous materials comprised of metals or metal clusters bonded together in a coordination system by organic linkers. They are becoming popular for gas separations due to their abilities to be tailored toward specific applications. Zirconium MOFs in particular are known for their high stability under standard temperature and pressure due to the strength of the Zirconium-Oxygen coordination bond. However, the acid modulator needed to ensure long range order of the product also prevents complete linker deprotonation. This leads to a powder product that cannot easily be incorporated into continuous MOF membranes. This study therefore implemented a new bi-phase synthesis technique with a deprotonating agent to achieve intergrowth in UiO-66 membranes. Crystal intergrowth will allow for effective gas separations and future permeation testing. During experimentation, successful intergrown UiO-66 membranes were synthesized and characterized. The degree of intergrowth and crystal orientations varied with changing deprotonating agent concentration, modulator concentration, and ligand:modulator ratios. Further studies will focus on achieving the same results on porous substrates.
ContributorsClose, Emily Charlotte (Author) / Mu, Bin (Thesis director) / Shan, Bohan (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
135735-Thumbnail Image.png
Description
One of the grand challenges of engineering is to provide access to clean water because it is predicted that by 2025 more than two thirds of the world’s population will face severe water shortages. To combat this global issue, our lab focuses on creating a novel composite membrane to

One of the grand challenges of engineering is to provide access to clean water because it is predicted that by 2025 more than two thirds of the world’s population will face severe water shortages. To combat this global issue, our lab focuses on creating a novel composite membrane to recover potable water from waste. For use as the water-selective component in this membrane design Linde Type A zeolites were synthesized for optimal size without the use of a template. Current template-free synthesis of zeolite LTA produces particles that are too large for our application therefore the particle size was reduced in this study to reduce fouling of the membrane while also investigating the nanoparticle synthesis mechanisms. The time and temperature of the reaction and the aging of the precursor gel were systematically modified and observed to determine the optimal conditions for producing the particles. Scanning electron microscopy, x-ray diffraction, and energy dispersive x-ray analysis were used for characterization. Sub-micron sized particles were synthesized at 2 weeks aging time at -8°C with an average size of 0.6 micrometers, a size suitable for our membrane. There is a limit to the posterity and uniformity of particles produced from modifying the reaction time and temperature. All results follow general crystallization theory. Longer aging produced smaller particles, consistent with nucleation theory. Spinodal decomposition is predicted to affect nucleation clustering during aging due to the temperature scheme. Efforts will be made to shorten the effective aging time and these particles will eventually be incorporated into our mixed matrix osmosis membrane.
ContributorsKing, Julia Ann (Author) / Lind, Mary Laura (Thesis director) / Durgun, Pinar Cay (Committee member) / Chemical Engineering Program (Contributor) / Materials Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
131569-Thumbnail Image.png
Description
Heavy metals such as selenium can be especially important to limit because they can cause serious health problems even at relatively low concentrations. In an effort to selectively remove selenium from solution, a PAABA (poly(aniline-co-p-aminobenzoic acid) conductive copolymer was synthesized in a selenic acid solution, and its ability to remove

Heavy metals such as selenium can be especially important to limit because they can cause serious health problems even at relatively low concentrations. In an effort to selectively remove selenium from solution, a PAABA (poly(aniline-co-p-aminobenzoic acid) conductive copolymer was synthesized in a selenic acid solution, and its ability to remove selenium was studied. Analysis of the Raman spectra confirmed the hypothesized formation of PAABA polymer. Constant voltage cycles showed success in precipitating the selenium out of solution via electroreduction, and ICP-MS confirmed the reduction of selenium concentrated in solution. These results indicate the PAABA synthesized in selenic acid shows promise for selective water treatment.
ContributorsSulzman, Serita Lynne (Author) / Wang, Qing Hua (Thesis director) / Chan, Candace (Committee member) / Materials Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131161-Thumbnail Image.png
Description
The goal of this thesis was to simplify the sample preparation process for cryogenic electron microscopy (cryo-EM), clearing the way for the imaging of larger biomolecules and further expansion of the field. Various protic ionic liquids (PILs) were chosen for synthesis according to their pH and other physical properties. After

The goal of this thesis was to simplify the sample preparation process for cryogenic electron microscopy (cryo-EM), clearing the way for the imaging of larger biomolecules and further expansion of the field. Various protic ionic liquids (PILs) were chosen for synthesis according to their pH and other physical properties. After several failed synthesizes, one PIL, cholinium dihydrogen phosphate, was chosen for further testing. This solution was put through a series of vitrification tests in order to understand its crystallization limits. Once limits were understood, cholinium dihydrogen phosphate was combined with ribosomal proteins and viewed under a transmission electron microscope to collect negative stain images. After adjusting the ratio of PIL to buffer and the concentration of ribosomes, images of whole intact ribosomes were captured. Samples were then placed in an EM grid, manually dipped in liquid nitrogen, and viewed using the the cryo-EM. These grids revealed ice too thick to properly image, an issue that was not solved by using a more aggressive blotting technique. Although the sample preparation process was not simplified, progress was made towards doing so and further testing using different techniques may result in success.
ContributorsStreet, Maya Ann (Author) / Angell, Charles Austen (Thesis director) / Chiu, Po-Lin (Committee member) / Materials Science and Engineering Program (Contributor) / School of Molecular Sciences (Contributor) / School of Human Evolution & Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132513-Thumbnail Image.png
Description
In this research, the effect of the crystal structure of the parent phase on the morphology of nanoporous gold is explored. Specifically, Cu-Au alloys are studied. For this experiment, Cu0.75Au0.25 is heat treated to achieve an ordered phase Cu3Au and a disordered random solid solution, face centered cubic, Cu0.75Au0.25 phase,

In this research, the effect of the crystal structure of the parent phase on the morphology of nanoporous gold is explored. Specifically, Cu-Au alloys are studied. For this experiment, Cu0.75Au0.25 is heat treated to achieve an ordered phase Cu3Au and a disordered random solid solution, face centered cubic, Cu0.75Au0.25 phase, which are then dealloyed to form nanoporous gold (NPG). Using a morphology digital image analysis software called AQUAMI, SEM images of the NPG morphology were characterized to collect data on the ligament length, ligament diameter, porosity size, etc. of the samples. It was determined that the NPG formed from the ordered parent phase had an average ligament diameter that was 10 nm larger than the NPG formed from the disordered parent phase. This may be due to the ordered crystal structure allowing for faster gold diffusion and coarsening resulting in an increased average ligament size. Further future work is needed in order to obtain further evidence to support this hypothesis.
ContributorsTse, Ariana Yusof (Author) / Sieradzki, Karl (Thesis director) / Wang, Qing Hua (Committee member) / Materials Science and Engineering Program (Contributor) / Walter Cronkite School of Journalism & Mass Comm (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05