Matching Items (50)
Filtering by

Clear all filters

147794-Thumbnail Image.png
Description

The nineteenth-century invention of smallpox vaccination in Great Britain has been well studied for its significance in the history of medicine as well as the ways in which it exposes Victorian anxieties regarding British nationalism, rural and urban class struggles, the behaviors of women, and animal contamination. Yet inoculation against

The nineteenth-century invention of smallpox vaccination in Great Britain has been well studied for its significance in the history of medicine as well as the ways in which it exposes Victorian anxieties regarding British nationalism, rural and urban class struggles, the behaviors of women, and animal contamination. Yet inoculation against smallpox by variolation, vaccination’s predecessor and a well-established Chinese medical technique that was spread from east to west to Great Britain, remains largely understudied in modern scholarly literature. In the early 1700s, Lady Mary Wortley Montagu, credited with bringing smallpox variolation to Great Britain, wrote first about the practice in the Turkish city of Adrianople and describes variolation as a “useful invention,” yet laments that, unlike the Turkish women who variolate only those in their “small neighborhoods,” British doctors would be able to “destroy this [disease] swiftly” worldwide should they adopt variolation. Examined through the lens of Edward Said’s Orientalism, techno-Orientalism, and medical Orientalism and contextualized by a comparison to British attitudes toward nineteenth century vaccination, eighteenth century smallpox variolation’s introduction to Britain from the non-British “Orient” represents an instance of reversed Orientalism, in which a technologically deficient British “Occident” must “Orientalize” itself to import the superior medical technology of variolation into Britain. In a scramble to retain technological superiority over the Chinese Orient, Britain manufactures a sense of total difference between an imagined British version of variolation and a real, non-British version of variolation. This imagination of total difference is maintained through characterizations of the non-British variolation as ancient, unsafe, and practiced by illegitimate practitioners, while the imagined British variolation is characterized as safe, heroic, and practiced by legitimate British medical doctors. The Occident’s instance of medical technological inferiority brought about by the importation of variolation from the Orient, which I propose represents an eighteenth-century instance of what I call medical techno-Orientalism, represents an expression of British anxiety over a medical technologically superior Orient—anxieties which express themselves as retaliatory attacks on the Orient and variolation as it is practiced in the Orient—and as an expression of British desire to maintain medical technological superiority over the Orient.

ContributorsMalotky, Braeden M (Author) / Agruss, David (Thesis director) / Soares, Rebecca (Committee member) / School of Life Sciences (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148192-Thumbnail Image.png
Description

Lyme disease is a common tick-borne illness caused by the Gram-negative bacterium Borrelia burgdorferi. An outer membrane protein of Borrelia burgdorferi, P66, has been suggested as a possible target for Lyme disease treatments. However, a lack of structural information available for P66 has hindered attempts to design medications to target

Lyme disease is a common tick-borne illness caused by the Gram-negative bacterium Borrelia burgdorferi. An outer membrane protein of Borrelia burgdorferi, P66, has been suggested as a possible target for Lyme disease treatments. However, a lack of structural information available for P66 has hindered attempts to design medications to target the protein. Therefore, this study attempted to find methods for expressing and purifying P66 in quantities that can be used for structural studies. It was found that by using the PelB signal sequence, His-tagged P66 could be directed to the outer membrane of Escherichia coli, as confirmed by an anti-His Western blot. Further attempts to optimize P66 expression in the outer membrane were made, pending verification via Western blotting. The ability to direct P66 to the outer membrane using the PelB signal sequence is a promising first step in determining the overall structure of P66, but further work is needed before P66 is ready for large-scale purification for structural studies.

ContributorsRamirez, Christopher Nicholas (Author) / Fromme, Petra (Thesis director) / Hansen, Debra (Committee member) / Department of Physics (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148322-Thumbnail Image.png
Description

The field of biomedical research relies on the knowledge of binding interactions between various proteins of interest to create novel molecular targets for therapeutic purposes. While many of these interactions remain a mystery, knowledge of these properties and interactions could have significant medical applications in terms of understanding cell signaling

The field of biomedical research relies on the knowledge of binding interactions between various proteins of interest to create novel molecular targets for therapeutic purposes. While many of these interactions remain a mystery, knowledge of these properties and interactions could have significant medical applications in terms of understanding cell signaling and immunological defenses. Furthermore, there is evidence that machine learning and peptide microarrays can be used to make reliable predictions of where proteins could interact with each other without the definitive knowledge of the interactions. In this case, a neural network was used to predict the unknown binding interactions of TNFR2 onto LT-ɑ and TRAF2, and PD-L1 onto CD80, based off of the binding data from a sampling of protein-peptide interactions on a microarray. The accuracy and reliability of these predictions would rely on future research to confirm the interactions of these proteins, but the knowledge from these methods and predictions could have a future impact with regards to rational and structure-based drug design.

ContributorsPoweleit, Andrew Michael (Author) / Woodbury, Neal (Thesis director) / Diehnelt, Chris (Committee member) / Chiu, Po-Lin (Committee member) / School of Molecular Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Language has a critical role as a social determinant of health and a source of healthcare disparities. Rhetorical devices are ubiquitous in medicine and are often used to persuade or inform care team members. Rhetorical devices help a healthcare team acknowledge and interpret narratives. For example, metaphors are frequently used

Language has a critical role as a social determinant of health and a source of healthcare disparities. Rhetorical devices are ubiquitous in medicine and are often used to persuade or inform care team members. Rhetorical devices help a healthcare team acknowledge and interpret narratives. For example, metaphors are frequently used as rhetorical devices by patients to describe cancer, including winning or losing a battle, surviving a fight, war, potentially implying that the patient feels helpless like a pawn fighting in a struggle directed by the physician, thus reducing patient autonomy and agency. However, this occidental approach is flawed because it excessively focuses on the individual's agency and marginalizes external factors, such as cultural beliefs and social support (Sontag, 1989). Although there is a large body of research about how the rhetoric of medicine affects patients in the United States, there is a lack of such research about how patient experiences' rhetoric can help increase the understanding of Latino populations' unique social determinants. This creative project aims to analyze the rhetorical differences in the description of disease amongst Latino and American communities, translating to creating an educational module for a Spanish for biomedical sciences class. The objective is to increase future healthcare professionals' ability to understand how the composition of descriptions and medical rhetoric in different mediums of humanities can serve as critical tools to analyze social determinants in Latino healthcare delivery.

ContributorsKottapalli, Sai Bhuvana (Author) / Estevez, Dulce (Thesis director) / Oberstein, Bruce (Committee member) / School of Molecular Sciences (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
135875-Thumbnail Image.png
Description
With a quantum efficiency of nearly 100%, the electron transfer process that occurs within the reaction center protein of the photosynthetic bacteria Rhodobacter (Rh.) sphaeroides is a paragon for understanding the complexities, intricacies, and overall systemization of energy conversion and storage in natural systems. To better understand the way in

With a quantum efficiency of nearly 100%, the electron transfer process that occurs within the reaction center protein of the photosynthetic bacteria Rhodobacter (Rh.) sphaeroides is a paragon for understanding the complexities, intricacies, and overall systemization of energy conversion and storage in natural systems. To better understand the way in which photons of light are captured, converted into chemically useful forms, and stored for biological use, an investigation into the reaction center protein, specifically into its cascade of cofactors, was undertaken. The purpose of this experimentation was to advance our knowledge and understanding of how differing protein environments and variant cofactors affect the spectroscopic aspects of and electron transfer kinetics within the reaction of Rh. sphaeroides. The native quinone, ubiquinone, was extracted from its pocket within the reaction center protein and replaced by non-native quinones having different reduction/oxidation potentials. It was determined that, of the two non-native quinones tested—1,2-naphthaquinone and 9,10- anthraquinone—the substitution of the anthraquinone (lower redox potential) resulted in an increased rate of recombination from the P+QA- charge-separated state, while the substitution of the napthaquinone (higher redox potential) resulted in a decreased rate of recombination.
ContributorsSussman, Hallie Rebecca (Author) / Woodbury, Neal (Thesis director) / Redding, Kevin (Committee member) / Lin, Su (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
135905-Thumbnail Image.png
Description
This study was conducted to observe the effects of vitamin C supplementation upon the expression of sICAM-1 in asthmatic subject. Two groups were created, each with a sample size of 4 subjects. One group was the vitamin C group (VC) and the other was the placebo group (PL). The study

This study was conducted to observe the effects of vitamin C supplementation upon the expression of sICAM-1 in asthmatic subject. Two groups were created, each with a sample size of 4 subjects. One group was the vitamin C group (VC) and the other was the placebo group (PL). The study was analyzed through observing concentrations of biomolecules present within samples of blood plasma and nasal lavages. These included vitamin C, sICAM-1 expression, and histamine. The following P-values calculated from the data collected from this study. The plasma vitamin C screening was p=0.3, and after 18 days of supplementation, p=0.03. For Nasal ICAM p=0.5 at Day 0, p=0.4 at Day 4, and p=0.9 at Day 18. For the Histamine samples p=0.9 at Day 0 and p=0.9 at Day 18. The following P-values calculated from the data collected from both studies. The plasma vitamin C screening was p=0.8, and after 18 days of supplementation, p=0.03. The change of vitamin C at the end of this study and the combined data both had a P-value that was calculated to be lower than 0.05, which meant that this change was significant because it was due to the intervention and not chance. For Nasal ICAM samples p=0.7 at Day 0, p=0.7 at Day 4, and p=1 at Day 18. For the Histamine p=0.7 at Day 0 and p=0.9 at Day 18. This study carries various implications although the study data was unable to show much significance. This was the second study to test this, and as more research is done, and the sample size grows, one will be able to observe whether this really is the mechanism through which vitamin C plays a role in immunological functions.
ContributorsKapadia, Chirag Vinay (Author) / Johnston, Carol (Thesis director) / LaBaer, Joshua (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
147551-Thumbnail Image.png
Description

Apolipoprotein (ApoE) plays an important role in the transport of lipids in the brain for normal functioning. There are three different isoforms of ApoE which are coded for by three alleles (E2, E3, E4). Patients carrying at least one copy of ApoE E4 are known to be at higher

Apolipoprotein (ApoE) plays an important role in the transport of lipids in the brain for normal functioning. There are three different isoforms of ApoE which are coded for by three alleles (E2, E3, E4). Patients carrying at least one copy of ApoE E4 are known to be at higher risk for developing Alzheimer’s disease (AD) and earlier onset of symptoms. This is due to the buildup of amyloid plaques and neurofibrillary tangles of the brain from the accumulation of tau proteins, which are associated with the progression of Alzheimer’s disease. However, findings on ApoE E2 have shown that it may be a protective allele since it is linked to a decreased risk of formation of amyloid plaques and neurofibrillary tangles. To study this phenomenon within the context of a local population group, polymerase chain reaction and gel electrophoresis were conducted on extracted DNA samples. The principal goal in this research study was to genotype ApoE variants using single nucleotide polymorphism (SNP) specific primers, and polymerase chain reaction to analyze the frequency in the Tempe population to determine future healthcare needs.

ContributorsBernal, Miranda (Author) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148435-Thumbnail Image.png
Description

Though schizophrenia was categorized as a mental illness over 100 years ago, there is a plethora of knowledge that continues to perplex the scientific and medical community alike. This tragic mental disorder affects approximately 1% of the general population, and many of these individuals are homeless if left untreated. Each

Though schizophrenia was categorized as a mental illness over 100 years ago, there is a plethora of knowledge that continues to perplex the scientific and medical community alike. This tragic mental disorder affects approximately 1% of the general population, and many of these individuals are homeless if left untreated. Each schizophrenia patient has a different set of symptoms, so all of these patients experience a variety of positive and negative symptoms. Negative symptoms are called so as they are in absence, and some examples include apathy, anhedonia, lack of motivation, reduced social drive, and reduced cognitive functioning. Positive behavior, on the other hand, is a change in behavior or thoughts such as visual or auditory hallucinations, delusions, confused thoughts, disorganized speech, and trouble concentrating. Because schizophrenia patients do not share the exact same set of symptoms, research in schizophrenia requires a tremendous amount of medical resources. Over the last few years, new studies have started in the field of schizophrenia involving proteomics, or the study of proteins and their function. This new frontier gives doctors and scientists alike a new opportunity to improve the quality of life of schizophrenia patients by providing a potential method through which patients would receive individualized treatment based on their specific symptoms.

ContributorsPeterson, Rozabel (Author) / Brian, Jennifer (Thesis director) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
131404-Thumbnail Image.png
Description
As of March 2020, there were over 112,400 patients actively waiting on the United States national organ transplant waitlist with only about 3,300 donors1. Although transplantation is an effective treatment for end-stage organ failure, the access to a procedure will vary depending on national regulations, cost of health care, extensive

As of March 2020, there were over 112,400 patients actively waiting on the United States national organ transplant waitlist with only about 3,300 donors1. Although transplantation is an effective treatment for end-stage organ failure, the access to a procedure will vary depending on national regulations, cost of health care, extensive screening processes, and the availability of organs2. Organ shortage is a worldwide problem, and the growing insufficiency has resulted patients becoming too for ill or dying while waiting3. Due to the varying wait times and costs of procedures, some patients have begun to outsource their own transplantation through international transactions, also known as transplant tourism2. The 2004 World Health Assembly resolution recognized these trades as a significant health policy issue, while also acknowledging the inability of national health care systems to meet the needs of patients4. To address this issue, a proposal will be made such that all live kidney and liver donors will be compensated $22,500 and $12,150 respectively through a cost-neutral scheme based on annual healthcare expenditures per organ that would be eliminated by a transplant. With this proposal, it is suggested that the organ transplant waitlist would not only be significantly reduced, but potentially eliminated, and the crisis of organ shortage would be defeated.
ContributorsMartin, Starla (Author) / Kingsbury, Jeffrey (Thesis director) / Edmonds, Hallie (Committee member) / School of Molecular Sciences (Contributor) / School of Human Evolution & Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131161-Thumbnail Image.png
Description
The goal of this thesis was to simplify the sample preparation process for cryogenic electron microscopy (cryo-EM), clearing the way for the imaging of larger biomolecules and further expansion of the field. Various protic ionic liquids (PILs) were chosen for synthesis according to their pH and other physical properties. After

The goal of this thesis was to simplify the sample preparation process for cryogenic electron microscopy (cryo-EM), clearing the way for the imaging of larger biomolecules and further expansion of the field. Various protic ionic liquids (PILs) were chosen for synthesis according to their pH and other physical properties. After several failed synthesizes, one PIL, cholinium dihydrogen phosphate, was chosen for further testing. This solution was put through a series of vitrification tests in order to understand its crystallization limits. Once limits were understood, cholinium dihydrogen phosphate was combined with ribosomal proteins and viewed under a transmission electron microscope to collect negative stain images. After adjusting the ratio of PIL to buffer and the concentration of ribosomes, images of whole intact ribosomes were captured. Samples were then placed in an EM grid, manually dipped in liquid nitrogen, and viewed using the the cryo-EM. These grids revealed ice too thick to properly image, an issue that was not solved by using a more aggressive blotting technique. Although the sample preparation process was not simplified, progress was made towards doing so and further testing using different techniques may result in success.
ContributorsStreet, Maya Ann (Author) / Angell, Charles Austen (Thesis director) / Chiu, Po-Lin (Committee member) / Materials Science and Engineering Program (Contributor) / School of Molecular Sciences (Contributor) / School of Human Evolution & Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05