Matching Items (2)
Filtering by

Clear all filters

171476-Thumbnail Image.png
Description
Portable health diagnostic systems seek to perform medical grade diagnostics in non-ideal environments. This work details a robust fault tolerant portable health diagnostic design implemented in hardware, firmware and software for the detectionof HPV in low-income countries. The device under device under test (DUT) is a fluorescence based lateral flow

Portable health diagnostic systems seek to perform medical grade diagnostics in non-ideal environments. This work details a robust fault tolerant portable health diagnostic design implemented in hardware, firmware and software for the detectionof HPV in low-income countries. The device under device under test (DUT) is a fluorescence based lateral flow assay (LFA) point-of-care (POC) device. This work’s contributions are: firmware and software development, calibration routine implementation, device performance characterization and a proposed method of in-software fault detection. Firmware was refactored from the original implementation of the POC fluorescence reader to expose an application programming interface (API) via USB. Companion software available for desktop environments (Windows, Mac and Linux) was created to interface with this firmware API and conduct macro level routines to request and receive fluorescence data while presenting a user-friendly interface to clinical technicians. Lastly, an environmental chamber was constructed to conduct sequential diagnostic reads in order to observe sensor drift and other deviations that might present themselves in real-world usage. The results from these evaluations show a standard deviation of less than 1% in fluorescence readings in nominal temperature environments (approx. 25C) suggesting that this system will have a favorable signal-to-noise (SNR) ratio in such a setting. In non-ideal over heated environments (≥38C), the evaluation results showed performance degradation with standard deviations as large as 15%.
ContributorsLue Sang, Christopher David (Author) / Blain Christen, Jennifer M (Thesis advisor) / Ozev, Sule (Committee member) / Goryll, Michael (Committee member) / Raupp, Gregory (Committee member) / Arizona State University (Publisher)
Created2022
155660-Thumbnail Image.png
Description
This work describes the development of a device for measuring CO2 in breath, which has applications in monitoring a variety of health issues, such as Chronic Obstructive Pulmonary Disease (COPD), asthma, and cardiovascular disease. The device takes advantage of colorimetric sensing technology in order to maintain a low cost and

This work describes the development of a device for measuring CO2 in breath, which has applications in monitoring a variety of health issues, such as Chronic Obstructive Pulmonary Disease (COPD), asthma, and cardiovascular disease. The device takes advantage of colorimetric sensing technology in order to maintain a low cost and high user-friendliness. The sensor consists of a pH dye, reactive element, and base coated on a highly porous Teflon membrane. The transmittance of the sensor is measured in the device via a simple LED/photodiode system, along with the flow rate, ambient relative humidity, and barometric pressure. The flow is measured by a newly developed flow meter described in this work, the Confined Pitot Tube (CPT) flow meter, which provides a high accuracy with reduced flow-resistance with a standard differential pressure transducer. I demonstrate in this work that the system has a high sensitivity, high specificity, fast time-response, high reproducibility, and good stability. The sensor has a simple calibration method which requires no action by the user, and utilizes a sophisticated, yet lightweight, model in order to predict temperature changes on the sensor during breathing and track changes in water content. It is shown to be effective for measuring CO2 waveform parameters on a breath-by-breath basis, such as End-Tidal CO2, Alveolar Plateau Slope, and Beginning Exhalation Slope.
ContributorsBridgeman, Devon (Author) / Forzani, Erica S (Thesis advisor) / Nikkhah, Mehdi (Committee member) / Holloway, Julianne (Committee member) / Raupp, Gregory (Committee member) / Emady, Heather (Committee member) / Arizona State University (Publisher)
Created2017