Matching Items (2)
Filtering by

Clear all filters

153442-Thumbnail Image.png
Description
It has been identified in the literature that there exists a link between the built environment and non-motorized transport. This study aims to contribute to existing literature on the effects of the built environment on cycling, examining the case of the whole State of California. Physical built environment features are

It has been identified in the literature that there exists a link between the built environment and non-motorized transport. This study aims to contribute to existing literature on the effects of the built environment on cycling, examining the case of the whole State of California. Physical built environment features are classified into six groups as: 1) local density, 2) diversity of land use, 3) road connectivity, 4) bike route length, 5) green space, 6) job accessibility. Cycling trips in one week for all children, school children, adults and employed-adults are investigated separately. The regression analysis shows that cycling trips is significantly associated with some features of built environment when many socio-demographic factors are taken into account. Street intersections, bike route length tend to increase the use of bicycle. These effects are well-aligned with literature. Moreover, both local and regional job accessibility variables are statistically significant in two adults' models. However, residential density always has a significant negatively effect on cycling trips, which is still need further research to confirm. Also, there is a gap in literature on how green space affects cycling, but the results of this study is still too unclear to make it up. By elasticity analysis, this study concludes that street intersections is the most powerful predictor on cycling trips. From another perspective, the effects of built environment on cycling at workplace (or school) are distinguished from at home. This study implies that a wide range of measures are available for planners to control vehicle travel by improving cycling-level in California.
ContributorsWang, Kailai, M.U.E.P (Author) / Salon, Deborah (Thesis advisor) / Rey, Sergio (Committee member) / Li, Wenwen (Committee member) / Arizona State University (Publisher)
Created2015
154788-Thumbnail Image.png
Description
Urban growth, from regional sprawl to global urbanization, is the most rapid, drastic, and irreversible form of human modification to the natural environment. Extensive land cover modifications during urban growth have altered the local energy balance, causing the city warmer than its surrounding rural environment, a phenomenon known as an

Urban growth, from regional sprawl to global urbanization, is the most rapid, drastic, and irreversible form of human modification to the natural environment. Extensive land cover modifications during urban growth have altered the local energy balance, causing the city warmer than its surrounding rural environment, a phenomenon known as an urban heat island (UHI). How are the seasonal and diurnal surface temperatures related to the land surface characteristics, and what land cover types and/or patterns are desirable for ameliorating climate in a fast growing desert city? This dissertation scrutinizes these questions and seeks to address them using a combination of satellite remote sensing, geographical information science, and spatial statistical modeling techniques.

This dissertation includes two main parts. The first part proposes to employ the continuous, pixel-based landscape gradient models in comparison to the discrete, patch-based mosaic models and evaluates model efficiency in two empirical contexts: urban landscape pattern mapping and land cover dynamics monitoring. The second part formalizes a novel statistical model called spatially filtered ridge regression (SFRR) that ensures accurate and stable statistical estimation despite the existence of multicollinearity and the inherent spatial effect.

Results highlight the strong potential of local indicators of spatial dependence in landscape pattern mapping across various geographical scales. This is based on evidence from a sequence of exploratory comparative analyses and a time series study of land cover dynamics over Phoenix, AZ. The newly proposed SFRR method is capable of producing reliable estimates when analyzing statistical relationships involving geographic data and highly correlated predictor variables. An empirical application of the SFRR over Phoenix suggests that urban cooling can be achieved not only by altering the land cover abundance, but also by optimizing the spatial arrangements of urban land cover features. Considering the limited water supply, rapid urban expansion, and the continuously warming climate, judicious design and planning of urban land cover features is of increasing importance for conserving resources and enhancing quality of life.
ContributorsFan, Chao (Author) / Myint, Soe W (Thesis advisor) / Li, Wenwen (Committee member) / Rey, Sergio J (Committee member) / Arizona State University (Publisher)
Created2016