Matching Items (6)
Filtering by

Clear all filters

152416-Thumbnail Image.png
Description
Droughts are a common phenomenon of the arid South-west USA climate. Despite water limitations, the region has been substantially transformed by agriculture and urbanization. The water requirements to support these human activities along with the projected increase in droughts intensity and frequency challenge long term sustainability and water security, thus

Droughts are a common phenomenon of the arid South-west USA climate. Despite water limitations, the region has been substantially transformed by agriculture and urbanization. The water requirements to support these human activities along with the projected increase in droughts intensity and frequency challenge long term sustainability and water security, thus the need to spatially and temporally characterize land use/land cover response to drought and quantify water consumption is crucial. This dissertation evaluates changes in `undisturbed' desert vegetation in response to water availability to characterize climate-driven variability. A new model coupling phenology and spectral unmixing was applied to Landsat time series (1987-2010) in order to derive fractional cover (FC) maps of annuals, perennials, and evergreen vegetation. Results show that annuals FC is controlled by short term water availability and antecedent soil moisture. Perennials FC follow wet-dry multi-year regime shifts, while evergreen is completely decoupled from short term changes in water availability. Trend analysis suggests that different processes operate at the local scale. Regionally, evergreen cover increased while perennials and annuals cover decreased. Subsequently, urban land cover was compared with its surrounding desert. A distinct signal of rain use efficiency and aridity index was documented from remote sensing and a soil-water-balance model. It was estimated that a total of 295 mm of water input is needed to sustain current greenness. Finally, an energy balance model was developed to spatio-temporally estimate evapotranspiration (ET) as a proxy for water consumption, and evaluate land use/land cover types in response to drought. Agricultural fields show an average ET of 9.3 mm/day with no significant difference between drought and wet conditions, implying similar level of water usage regardless of climatic conditions. Xeric neighborhoods show significant variability between dry and wet conditions, while mesic neighborhoods retain high ET of 400-500 mm during drought due to irrigation. Considering the potentially limited water availability, land use/land cover changes due to population increases, and the threat of a warming and drying climate, maintaining large water-consuming, irrigated landscapes challenges sustainable practices of water conservation and the need to provide amenities of this desert area for enhancing quality of life.
ContributorsKaplan, Shai (Author) / Myint, Soe Win (Thesis advisor) / Brazel, Anthony J. (Committee member) / Georgescu, Matei (Committee member) / Arizona State University (Publisher)
Created2014
141441-Thumbnail Image.png
Description

Objectives: To provide novel quantification and advanced measurements of surface temperatures (Ts) in playgrounds, employing multiple scales of data, and provide insight into hot-hazard mitigation techniques and designs for improved environmental and public health.

Methods: We conduct an analysis of Ts in two Metro-Phoenix playgrounds at three scales: neighborhood (1 km

Objectives: To provide novel quantification and advanced measurements of surface temperatures (Ts) in playgrounds, employing multiple scales of data, and provide insight into hot-hazard mitigation techniques and designs for improved environmental and public health.

Methods: We conduct an analysis of Ts in two Metro-Phoenix playgrounds at three scales: neighborhood (1 km resolution), microscale (6.8 m resolution), and touch-scale (1 cm resolution). Data were derived from two sources: airborne remote sensing (neighborhood and microscale) and in situ (playground site) infrared Ts (touch-scale). Metrics of surface-to-air temperature deltas (Ts–a) and scale offsets (errors) are introduced.

Results: Select in situ Ts in direct sunlight are shown to approach or surpass values likely to result in burns to children at touch-scales much finer than Ts resolved by airborne remote sensing. Scale offsets based on neighbourhood and microscale ground observations are 3.8 ◦C and 7.3 ◦C less than the Ts–a at the 1 cm touch-scale, respectively, and 6.6 ◦C and 10.1 ◦C lower than touch-scale playground equipment Ts, respectively. Hence, the coarser scales underestimate high Ts within playgrounds. Both natural (tree) and artificial (shade sail) shade types are associated with significant reductions in Ts.

Conclusions: A scale mismatch exists based on differing methods of urban Ts measurement. The sub-meter touch-scale is the spatial scale at which data must be collected and policies of urban landscape design and health must be executed in order to mitigate high Ts in high-contact environments such as playgrounds. Shade implementation is the most promising mitigation technique to reduce child burns, increase park usability, and mitigate urban heating.

ContributorsVanos, Jennifer K. (Author) / Middel, Ariane (Author) / McKercher, Grant R. (Author) / Kuras, Evan R. (Author) / Ruddell, Benjamin L. (Author)
Created2015-11-10
171565-Thumbnail Image.png
Description
Planetary mineralogy provides important clues about a planet’s geologic history, specifically how the planet first solidified and what geological processes have taken place since. I used spectral and composition data from the Mars Science Laboratory Curiosity rover to study some of the most recent geologic events on Mars. I also

Planetary mineralogy provides important clues about a planet’s geologic history, specifically how the planet first solidified and what geological processes have taken place since. I used spectral and composition data from the Mars Science Laboratory Curiosity rover to study some of the most recent geologic events on Mars. I also used modeled mineralogy of hypothetical exoplanets to understand the initial crystallization of exoplanets. Orbital data of Mt. Sharp, a ~5 km tall mound of sedimentary material, in Gale crater suggests that minerals associated with liquid water are present. These minerals, such as hydrated Mg-sulfates that are left behind as water evaporates, likely represent the beginning of Mars’ transition from a warm wet planet to the cold dry planet it is today.To understand how the mineralogy of Mt. Sharp changed, I used data from the Mastcam instrument on Curiosity to collect visible to near-infrared spectra of rocks from Vera Rubin Ridge and the Carolyn Shoemaker formation. Additionally, I collected laboratory spectra of powered binary mineral mixtures to understand how common minerals such as plagioclase, pyroxene, and hematite might obscure the spectral features of phyllosilicates and Mg-sulfates. Lastly, to better understanding Mars’ mineralogy, I analyzed numerous mixtures with Mg-sulfates in a nitrogen filled glovebox to better represent some of the environmental conditions of present-day Mars. Minerals such as phyllosilicates and Mg-sulfates, often referred to as secondary minerals, are only found on planets that have experienced alteration since the planet first solidified. The current level of understanding of Martian mineralogy has only been obtained after decades of sending numerous orbital and landed missions with intricate science instruments. But there is not this level of understanding for all planets, and especially not for planets outside of the solar system. Using modeled mineralogy, I deciphered the order in which primary minerals (i.e., olivine, pyroxenes, and plagioclase) could have formed as exoplanets first solidified. Understanding the mineralogy of planetary bodies gives insight into the geologic history of processes that cannot be seen, because they are no longer occurring, or even of planets that are difficult to find.
ContributorsJacob, Samantha Renee (Author) / Bell Iii, James F (Thesis advisor) / Till, Christy B (Committee member) / Desch, Steven J (Committee member) / Robinson, Mark S (Committee member) / Williams, David A (Committee member) / Arizona State University (Publisher)
Created2022
157373-Thumbnail Image.png
Description
The seasonal deposition of CO2 on the polar caps is one of the most dynamic processes on Mars and is a dominant driver of the global climate. Remote sensing temperature and albedo data were used to estimate the subliming mass of CO2 ice on south polar gullies near Sisyphi Cavi.

The seasonal deposition of CO2 on the polar caps is one of the most dynamic processes on Mars and is a dominant driver of the global climate. Remote sensing temperature and albedo data were used to estimate the subliming mass of CO2 ice on south polar gullies near Sisyphi Cavi. Results showed that column mass abundances range from 400 - 1000 kg.m2 in an area less than 60 km2 in late winter. Complete sublimation of the seasonal caps may occur later than estimated by large-scale studies and is geographically dependent. Seasonal ice depth estimates suggested variations of up to 1.5 m in depth or 75% in porosity at any one time. Interannual variations in these data appeared to correlate with dust activity in the southern hemisphere. Correlation coefficients were used to investigate the relationship between frost-free surface properties and the evolution of the seasonal ice in this region. Ice on high thermal inertia units was found to disappear before any other ice, likely caused by inhibited deposition during fall. Seasonal ice springtime albedo appeared to be predominantly controlled by orientation, with north-facing slopes undergoing brightening initially in spring, then subliming before south-facing slopes. Overall, the state of seasonal ice is far more complex than globally and regionally averaged studies can identify.

The discovery of cryovolcanic features on Charon and the presence of ammonia hydrates on the surfaces of other medium-sized Kuiper Belt Objects suggests that cryovolcanism may be important to their evolution. A two-dimensional, center-point finite difference, thermal hydraulic model was developed to explore the behavior of cryovolcanic conduits on midsized KBOs. Conduits on a Charon-surrogate were shown to maintain flow through over 200 km of crust and mantle down to radii of R = 0.20 m. Radii higher than this became turbulent due to high viscous dissipation and low thermal conductivity. This model was adapted to explore the emplacement of Kubrik Mons. Steady state flow was achieved with a conduit of radius R = 0.02 m for a source chamber at 2.3 km depth. Effusion rates computed from this estimated a 122 - 163 Myr upper limit formation timescale.
ContributorsMount, Christopher (Author) / Christensen, Philip R. (Thesis advisor) / Desch, Steven J (Committee member) / Bell, James F. (Committee member) / Clarke, Amanda B (Committee member) / Whipple, Kelin X (Committee member) / Arizona State University (Publisher)
Created2019
156004-Thumbnail Image.png
Description
Water is a critical resource for future human missions, and is necessary for understanding the evolution of the Solar System. The Moon and Mars have water in various forms and are therefore high-priority targets in the search for accessible extraterrestrial water. Complementary remote sensing analyses coupled with laboratory

Water is a critical resource for future human missions, and is necessary for understanding the evolution of the Solar System. The Moon and Mars have water in various forms and are therefore high-priority targets in the search for accessible extraterrestrial water. Complementary remote sensing analyses coupled with laboratory and field studies are necessary to provide a scientific context for future lunar and Mars exploration. In this thesis, I use multiple techniques to investigate the presence of water-ice at the lunar poles and the properties of martian chloride minerals, whose evolution is intricately linked with liquid water.

Permanently shadowed regions (PSRs) at the lunar poles may contain substantial water ice, but radar signatures at PSRs could indicate water ice or large block populations. Mini-RF radar and Lunar Reconnaissance Orbiter Camera Narrow Angle Camera (LROC NAC) products were used to assess block abundances where radar signatures indicated potential ice deposits. While the majority of PSRs in this study indicated large block populations and a low likelihood of water ice, one crater – Rozhdestvenskiy N – showed indirect indications of water ice in its interior.

Chloride deposits indicate regions where the last substantial liquid water existed on Mars. Major ion abundances and expected precipitation sequences of terrestrial chloride brines could provide context for assessing the provenance of martian chloride deposits. Chloride minerals are most readily distinguished in the far-infrared (45+ μm), where their fundamental absorption features are strongest. Multiple chloride compositions and textures were characterized in far-infrared emission for the first time. Systematic variations in the spectra were observed; these variations will allow chloride mineralogy to be determined and large variations in texture to be constrained.

In the present day, recurring slope lineae (RSL) may indicate water flow, but fresh water is not stable on Mars. However, dissolved chloride could allow liquid water to flow transiently. Using Thermal Emission Imaging System (THEMIS) data, I determined that RSL are most likely not fed by chloride-rich brines on Mars. Substantial amounts of salt would be consumed to produce a surface water flow; therefore, these features are therefore thought to instead be surface darkening due to capillary wicking.
ContributorsMitchell, Julie (Author) / Christensen, Philip R. (Thesis advisor) / Bell Iii, James F (Committee member) / Desch, Steven J (Committee member) / Hartnett, Hilairy E (Committee member) / Robinson, Mark S (Committee member) / Arizona State University (Publisher)
Created2017
128945-Thumbnail Image.png
Description

Summer daytime cooling efficiency of various land cover is investigated for the urban core of Phoenix, Arizona, using the Local-Scale Urban Meteorological Parameterization Scheme (LUMPS). We examined the urban energy balance for 2 summer days in 2005 to analyze the daytime cooling-water use tradeoff and the timing of sensible heat

Summer daytime cooling efficiency of various land cover is investigated for the urban core of Phoenix, Arizona, using the Local-Scale Urban Meteorological Parameterization Scheme (LUMPS). We examined the urban energy balance for 2 summer days in 2005 to analyze the daytime cooling-water use tradeoff and the timing of sensible heat reversal at night. The plausibility of the LUMPS model results was tested using remotely sensed surface temperatures from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) imagery and reference evapotranspiration values from a meteorological station. Cooling efficiency was derived from sensible and latent heat flux differences. The time when the sensible heat flux turns negative (sensible heat flux transition) was calculated from LUMPS simulated hourly fluxes. Results indicate that the time when the sensible heat flux changes direction at night is strongly influenced by the heat storage capacity of different land cover types and by the amount of vegetation. Higher heat storage delayed the transition up to 3 h in the study area, while vegetation expedited the sensible heat reversal by 2 h. Cooling efficiency index results suggest that overall, the Phoenix urban core is slightly more efficient at cooling than the desert, but efficiencies do not increase much with wet fractions higher than 20%. Industrial sites with high impervious surface cover and low wet fraction have negative cooling efficiencies. Findings indicate that drier neighborhoods with heterogeneous land uses are the most efficient landscapes in balancing cooling and water use in Phoenix. However, further factors such as energy use and human vulnerability to extreme heat have to be considered in the cooling-water use tradeoff, especially under the uncertainties of future climate change.

ContributorsMiddel, Ariane (Author) / Brazel, Anthony J. (Author) / Kaplan, Shai (Author) / Myint, Soe W. (Author)
Created2012-08-12