Matching Items (9)
Filtering by

Clear all filters

151696-Thumbnail Image.png
Description
The temperature of a planet's surface depends on numerous physical factors, including thermal inertia, albedo and the degree of insolation. Mars is a good target for thermal measurements because the low atmospheric pressure combined with the extreme dryness results in a surface dominated by large differences in thermal inertia, minimizing

The temperature of a planet's surface depends on numerous physical factors, including thermal inertia, albedo and the degree of insolation. Mars is a good target for thermal measurements because the low atmospheric pressure combined with the extreme dryness results in a surface dominated by large differences in thermal inertia, minimizing the effect of other physical properties. Since heat is propagated into the surface during the day and re-radiated at night, surface temperatures are affected by sub-surface properties down to several thermal skin depths. Because of this, orbital surface temperature measurements combined with a computational thermal model can be used to determine sub-surface structure. This technique has previously been applied to estimate the thickness and thermal inertia of soil layers on Mars on a regional scale, but the Mars Odyssey Thermal Emission Imaging System "THEMIS" instrument allows much higher-resolution thermal imagery to be obtained. Using archived THEMIS data and the KRC thermal model, a process has been developed for creating high-resolution maps of Martian soil layer thickness and thermal inertia, allowing investigation of the distribution of dust and sand at a scale of 100 m/pixel.
ContributorsHeath, Simon (Author) / Christensen, Philip R. (Philip Russel) (Thesis advisor) / Bel, James (Thesis advisor) / Hervig, Richard (Committee member) / Arizona State University (Publisher)
Created2013
151866-Thumbnail Image.png
Description
This dissertation investigates spatial and temporal changes in land cover and plant species distributions on Cyprus in the past, present and future (1973-2070). Landsat image analysis supports inference of land cover changes following the political division of the island of Cyprus in 1974. Urban growth in Nicosia, Larnaka and Limasol,

This dissertation investigates spatial and temporal changes in land cover and plant species distributions on Cyprus in the past, present and future (1973-2070). Landsat image analysis supports inference of land cover changes following the political division of the island of Cyprus in 1974. Urban growth in Nicosia, Larnaka and Limasol, as well as increased development along the southern coastline, is clearly evident between 1973 and 2011. Forests of the Troodos and Kyrenia Ranges remain relatively stable, with transitions occurring most frequently between agricultural land covers and shrub/herbaceous land covers. Vegetation models were constructed for twenty-two plant species of Cyprus using Maxent to predict potentially suitable areas of occurrence. Modern vegetation models were constructed from presence-only data collected by field surveys conducted between 2008 and 2011. These models provide a baseline for the assessment of potential species distributions under two climate change scenarios (A1b and A2) for the years 2030, 2050, and 2070. Climate change in Cyprus is likely to influence habitat availability, particularly for high elevation species as the relatively low elevation mountain ranges and small latitudinal range prevent species from shifting to areas of suitable environmental conditions. The loss of suitable habitat for some species may allow the introduction of non-native plant species or the expansion of generalists currently excluded from these areas. Results from future projections indicate the loss of suitable areas for most species by the year 2030 under both climate regimes and all four endemic species (Cedrus brevifolia, Helianthemum obtusifolium, Pterocephalus multiflorus, and Quercus alnifolia) are predicted to lose all suitable environments as soon as 2030. As striking exceptions Prunus dulcis (almond), Ficus carica (fig), Punica granatum (pomegranate) and Olea europaea (olive), which occur as both wild varieties and orchard cultigens, will expand under both scenarios. Land cover and species distribution maps are evaluated in concert to create a more detailed interpretation of the Cypriot landscape and to discuss the potential implications of climate change for land cover and plant species distributions.
ContributorsRidder, Elizabeth (Author) / Fall, Patricia L. (Thesis advisor) / Myint, Soe W (Committee member) / Hirt, Paul W (Committee member) / Arizona State University (Publisher)
Created2013
153231-Thumbnail Image.png
Description
Much of Mars' surface is mantled by bright dust, which masks the spectral features used to interpret the mineralogy of the underlying bedrock. Despite the wealth of near-infrared (NIR) and thermal infrared data returned from orbiting spacecraft in recent decades, the detailed bedrock composition of approximately half of the martian

Much of Mars' surface is mantled by bright dust, which masks the spectral features used to interpret the mineralogy of the underlying bedrock. Despite the wealth of near-infrared (NIR) and thermal infrared data returned from orbiting spacecraft in recent decades, the detailed bedrock composition of approximately half of the martian surface remains relatively unknown due to dust cover. To address this issue, and to help gain a better understanding of the bedrock mineralogy in dusty regions, data from the Thermal Emission Spectrometer (TES) Dust Cover Index (DCI) and Mars Reconnaissance Orbiter (MRO) Mars Color Imager (MARCI) were used to identify 63 small localized areas within the classical bright dusty regions of Arabia Terra, Elysium Planitia, and Tharsis as potential "windows" through the dust; that is, areas where the dust cover is thin enough to permit infrared remote sensing of the underlying bedrock. The bedrock mineralogy of each candidate "window" was inferred using processed spectra from the Mars Express (MEx) Observatoire pour la Mineralogie, l'Eau, les Glaces et l'Activité (OMEGA) NIR spectrometer and, where possible, TES. 12 areas of interest returned spectra that are consistent with mineral species expected to be present at the regional scale, such as high- and low-calcium pyroxene, olivine, and iron-bearing glass. Distribution maps were created using previously defined index parameters for each species present within an area. High-quality TES spectra, if present within an area of interest, were deconvolved to estimate modal mineralogy and support NIR results. OMEGA data from Arabia Terra and Elysium Planitia are largely similar and indicate the presence of high-calcium pyroxene with significant contributions of glass and olivine, while TES data suggest an intermediate between the established southern highlands and Syrtis Major compositions. Limited data from Tharsis indicate low-calcium pyroxene mixed with lesser amounts of high-calcium pyroxene and perhaps glass. TES data from southern Tharsis correlate well with the previously inferred compositions of the Aonium and Mare Sirenum highlands immediately to the south.
ContributorsLai, Jason Chi-Shun (Author) / Bell, James (Thesis advisor) / Christensen, Philip R. (Philip Russel) (Committee member) / Hervig, Richard (Committee member) / Arizona State University (Publisher)
Created2014
150286-Thumbnail Image.png
Description

This doctoral dissertation research aims to develop a comprehensive definition of urban open spaces and to determine the extent of environmental, social and economic impacts of open spaces on cities and the people living there. The approach I take to define urban open space is to apply fuzzy set theory

This doctoral dissertation research aims to develop a comprehensive definition of urban open spaces and to determine the extent of environmental, social and economic impacts of open spaces on cities and the people living there. The approach I take to define urban open space is to apply fuzzy set theory to conceptualize the physical characteristics of open spaces. In addition, a 'W-green index' is developed to quantify the scope of greenness in urban open spaces. Finally, I characterize the environmental impact of open spaces' greenness on the surface temperature, explore the social benefits through observing recreation and relaxation, and identify the relationship between housing price and open space be creating a hedonic model on nearby housing to quantify the economic impact. Fuzzy open space mapping helps to investigate the landscape characteristics of existing-recognized open spaces as well as other areas that can serve as open spaces. Research findings indicated that two fuzzy open space values are effective to the variability in different land-use types and between arid and humid cities. W-Green index quantifies the greenness for various types of open spaces. Most parks in Tempe, Arizona are grass-dominant with higher W-Green index, while natural landscapes are shrub-dominant with lower index. W-Green index has the advantage to explain vegetation composition and structural characteristics in open spaces. The outputs of comprehensive analyses show that the different qualities and types of open spaces, including size, greenness, equipment (facility), and surrounding areas, have different patterns in the reduction of surface temperature and the number of physical activities. The variance in housing prices through the distance to park was, however, not clear in this research. This dissertation project provides better insight into how to describe, plan, and prioritize the functions and types of urban open spaces need for sustainable living. This project builds a comprehensive framework for analyzing urban open spaces in an arid city. This dissertation helps expand the view for urban environment and play a key role in establishing a strategy and finding decision-makings.

ContributorsKim, Won Kyung (Author) / Wentz, Elizabeth (Thesis advisor) / Myint, Soe W (Thesis advisor) / Brazel, Anthony (Committee member) / Guhathakurta, Subhrajit (Committee member) / Arizona State University (Publisher)
Created2011
150024-Thumbnail Image.png
Description
Chemical and mineralogical data from Mars shows that the surface has been chemically weathered on local to regional scales. Chemical trends and the types of chemical weathering products present on the surface and their abundances can elucidate information about past aqueous processes. Thermal-infrared (TIR) data and their respective models are

Chemical and mineralogical data from Mars shows that the surface has been chemically weathered on local to regional scales. Chemical trends and the types of chemical weathering products present on the surface and their abundances can elucidate information about past aqueous processes. Thermal-infrared (TIR) data and their respective models are essential for interpreting Martian mineralogy and geologic history. However, previous studies have shown that chemical weathering and the precipitation of fine-grained secondary silicates can adversely affect the accuracy of TIR spectral models. Furthermore, spectral libraries used to identify minerals on the Martian surface lack some important weathering products, including poorly-crystalline aluminosilicates like allophane, thus eliminating their identification in TIR spectral models. It is essential to accurately interpret TIR spectral data from chemically weathered surfaces to understand the evolution of aqueous processes on Mars. Laboratory experiments were performed to improve interpretations of TIR data from weathered surfaces. To test the accuracy of deriving chemistry of weathered rocks from TIR spectroscopy, chemistry was derived from TIR models of weathered basalts from Baynton, Australia and compared to actual weathering rind chemistry. To determine how specific secondary silicates affect the TIR spectroscopy of weathered basalts, mixtures of basaltic minerals and small amounts of secondary silicates were modeled. Poorly-crystalline aluminosilicates were synthesized and their TIR spectra were added to spectral libraries. Regional Thermal Emission Spectrometer (TES) data were modeled using libraries containing these poorly-crystalline aluminosilicates to test for their presence on the Mars. Chemistry derived from models of weathered Baynton basalts is not accurate, but broad chemical weathering trends can be interpreted from the data. TIR models of mineral mixtures show that small amounts of crystalline and amorphous silicate weathering products (2.5-5 wt.%) can be detected in TIR models and can adversely affect modeled plagioclase abundances. Poorly-crystalline aluminosilicates are identified in Northern Acidalia, Solis Planum, and Meridiani. Previous studies have suggested that acid sulfate weathering was the dominant surface alteration process for the past 3.5 billion years; however, the identification of allophane indicates that alteration at near-neutral pH occurred on regional scales and that acid sulfate weathering is not the only weathering process on Mars.
ContributorsRampe, Elizabeth Barger (Author) / Sharp, Thomas G (Thesis advisor) / Christensen, Phillip (Committee member) / Hervig, Richard (Committee member) / Shock, Everett (Committee member) / Williams, Lynda (Committee member) / Arizona State University (Publisher)
Created2011
150960-Thumbnail Image.png
Description
Accurate characterization of forest canopy cover from satellite imagery hinges on the development of a model that considers the level of detail achieved by field methods. With the improved precision of both optical sensors and various spatial techniques, models built to extract forest structure attributes have become increasingly robust, yet

Accurate characterization of forest canopy cover from satellite imagery hinges on the development of a model that considers the level of detail achieved by field methods. With the improved precision of both optical sensors and various spatial techniques, models built to extract forest structure attributes have become increasingly robust, yet many still fail to address some of the most important characteristics of a forest stand's intricate make-up. The objective of this study, therefore, was to address canopy cover from the ground, up. To assess canopy cover in the field, a vertical densitometer was used to acquire a total of 2,160 percent-cover readings from 30 randomly located triangular plots within a 6.94 km2 study area in the central highlands of the Bradshaw Ranger District, Prescott National Forest, Arizona. Categorized by species with the largest overall percentage of cover observations (Pinus ponderosa, Populus tremuloides, and Quercus gambelii), three datasets were created to assess the predictability of coniferous, deciduous, and mixed (coniferous and deciduous) canopies. Landsat-TM 5 imagery was processed using six spectral enhancement algorithms (PCA, TCT, NDVI, EVI, RVI, SAVI) and three local windows (3x3, 5x5, 7x7) to extract and assess the various ways in which these data were expressed in the imagery, and from those expressions, develop a model that predicted percent-cover for the entire study area. Generally, modeled cover estimates exceeded actual cover, over predicting percent-cover by a margin of 9-13%. Models predicted percent-cover more accurately when treated with a 3x3 local window than those treated with 5x5 and 7x7 local windows. In addition, the performance of models defined by the principal components of three vegetation indices (NDVI, EVI, RVI) were superior to those defined by the principal components of all four (NDVI, EVI, RVI, SAVI), as well as the principal and tasseled cap components of all multispectral bands (bands 123457). Models designed to predict mixed and coniferous percent-cover were more accurate than deciduous models.
ContributorsSchirmang, Tracy Lynn (Author) / Myint, Soe W (Thesis advisor) / Fall, Patricia L. (Thesis advisor) / Brazel, Anthony J. (Committee member) / Arizona State University (Publisher)
Created2012
154001-Thumbnail Image.png
Description
The Dhofar Cloud Forest is one of the most diverse ecosystems on the Arabian Peninsula. As part of the South Arabian Cloud Forest that extends from southern Oman to Yemen, the cloud forest is an important center of endemism and provides valuable ecosystem services to those living in the region.

The Dhofar Cloud Forest is one of the most diverse ecosystems on the Arabian Peninsula. As part of the South Arabian Cloud Forest that extends from southern Oman to Yemen, the cloud forest is an important center of endemism and provides valuable ecosystem services to those living in the region. There have been various claims made about the health of the cloud forest and its surrounding region, the most prominent of which are: 1) variability of the Indian Summer Monsoon threatens long-term vegetation health, and 2) human encroachment is causing deforestation and land degradation. This dissertation uses three independent studies to test these claims and bring new insight about the biodiversity of the cloud forest.

Evidence is presented that shows that the vegetation dynamics of the cloud forest are resilient to most of the variability in the monsoon. Much of the biodiversity in the cloud forest is dominated by a few species with high abundance and a moderate number of species at low abundance. The characteristic tree species include Anogeissus dhofarica and Commiphora spp. These species tend to dominate the forested regions of the study area. Grasslands are dominated by species associated with overgrazing (Calotropis procera and Solanum incanum). Analysis from a land cover study conducted between 1988 and 2013 shows that deforestation has occurred to approximately 8% of the study area and decreased vegetation fractions are found throughout the region. Areas around the city of Salalah, located close to the cloud forest, show widespread degradation in the 21st century based on an NDVI time series analysis. It is concluded that humans are the primary driver of environmental change. Much of this change is tied to national policies and development priorities implemented after the Dhofar War in the 1970’s.
ContributorsGalletti, Christopher S (Author) / Turner, Billie L (Thesis advisor) / Fall, Patricia L. (Committee member) / Myint, Soe W (Committee member) / Arizona State University (Publisher)
Created2015
136390-Thumbnail Image.png
Description
There are many outstanding questions regarding the petrologic processes that give rise to andesitic and basaltic magmas in subduction zones, including the specifics that govern their geographical distribution in a given arc segment. Here I investigate the genesis of calc-alkaline and tholeiitic basalts from the Lassen Volcanic Center in order

There are many outstanding questions regarding the petrologic processes that give rise to andesitic and basaltic magmas in subduction zones, including the specifics that govern their geographical distribution in a given arc segment. Here I investigate the genesis of calc-alkaline and tholeiitic basalts from the Lassen Volcanic Center in order to determine the pressure, temperature, source composition, and method of melting that lead to the production of melt in the mantle below Lassen. To this aim, a suite of primitive basalts (i.e. SiO2<52 and Mg#>65) are corrected for fractional crystallization by adding minerals back to the bulk rock composition with the goal of returning them to a primary composition in equilibrium with the mantle. Thermobarometry of the primary melt compositions is conducted to determine temperature and pressure of melting, in addition to a forward mantle modeling technique to simulate mantle melting at varying pressures to constrain source composition and method of melting (batch vs. fractional). The results from the two techniques agree on an average depth of melt extraction of 36 km and a source composition similar to that of depleted mantle melted by batch melting. Although attempted for both calc-alkaline and tholeiitic basalts, the fractional crystallization correction and thus the pressure-temperature calculations were only successful for tholeiitic basalts due to the hydrous nature of the calc-alkaline samples. This leaves an opportunity to repeat this study with parameters appropriate for hydrous basalts, allowing for the comparison of calc-alkaline and tholeiitic melting conditions.
ContributorsSheppard, Katherine Davis (Author) / Till, Christy (Thesis director) / Hervig, Richard (Committee member) / Barrett, The Honors College (Contributor) / School of Earth and Space Exploration (Contributor)
Created2015-05
154788-Thumbnail Image.png
Description
Urban growth, from regional sprawl to global urbanization, is the most rapid, drastic, and irreversible form of human modification to the natural environment. Extensive land cover modifications during urban growth have altered the local energy balance, causing the city warmer than its surrounding rural environment, a phenomenon known as an

Urban growth, from regional sprawl to global urbanization, is the most rapid, drastic, and irreversible form of human modification to the natural environment. Extensive land cover modifications during urban growth have altered the local energy balance, causing the city warmer than its surrounding rural environment, a phenomenon known as an urban heat island (UHI). How are the seasonal and diurnal surface temperatures related to the land surface characteristics, and what land cover types and/or patterns are desirable for ameliorating climate in a fast growing desert city? This dissertation scrutinizes these questions and seeks to address them using a combination of satellite remote sensing, geographical information science, and spatial statistical modeling techniques.

This dissertation includes two main parts. The first part proposes to employ the continuous, pixel-based landscape gradient models in comparison to the discrete, patch-based mosaic models and evaluates model efficiency in two empirical contexts: urban landscape pattern mapping and land cover dynamics monitoring. The second part formalizes a novel statistical model called spatially filtered ridge regression (SFRR) that ensures accurate and stable statistical estimation despite the existence of multicollinearity and the inherent spatial effect.

Results highlight the strong potential of local indicators of spatial dependence in landscape pattern mapping across various geographical scales. This is based on evidence from a sequence of exploratory comparative analyses and a time series study of land cover dynamics over Phoenix, AZ. The newly proposed SFRR method is capable of producing reliable estimates when analyzing statistical relationships involving geographic data and highly correlated predictor variables. An empirical application of the SFRR over Phoenix suggests that urban cooling can be achieved not only by altering the land cover abundance, but also by optimizing the spatial arrangements of urban land cover features. Considering the limited water supply, rapid urban expansion, and the continuously warming climate, judicious design and planning of urban land cover features is of increasing importance for conserving resources and enhancing quality of life.
ContributorsFan, Chao (Author) / Myint, Soe W (Thesis advisor) / Li, Wenwen (Committee member) / Rey, Sergio J (Committee member) / Arizona State University (Publisher)
Created2016