Matching Items (3)
Filtering by

Clear all filters

136517-Thumbnail Image.png
Description
Adopting smart city tactics is important because it allows cities to develop sustainable communities through efficient policy initiatives. This study exemplifies how data analytics enables planners within smart cities to gain a better understanding of their population, and can make more informed choices based on these consumer choices. As a

Adopting smart city tactics is important because it allows cities to develop sustainable communities through efficient policy initiatives. This study exemplifies how data analytics enables planners within smart cities to gain a better understanding of their population, and can make more informed choices based on these consumer choices. As a rising share of the millennial generation enters the workforce, cities across the world are developing policy initiatives in the hopes of attracting these highly educated individuals. Due to this generation's strength in driving regional economic vitality directly and indirectly, it is in the best interests of city planners to understand the preferences of millennials so this information can be used to improve the attractiveness of communities for this high-purchasing power, productive segment of the population. Past research has revealed a tendency within this demographic to make location decisions based on the degree of ‘livability’ in an area. This degree represents a holistic approach at defining quality of life through the interconnectedness of both the built and social environments in cities.

Due to the importance of millennials to cities around the globe, this study uses 2010 ZIP code area data and the Phoenix metropolitan area as a case study to test the relationships between thirteen parameters of livability and the presence of millennials after controlling for other correlates of millennial preference.

The results of a multiple regression model indicated a positive linear association between livability parameters within smart cities and the presence of millennials. Therefore, the selected parameters of livability within smart cities are significant measures in influencing location decisions made by millennials. Urban planners can consequently increase the likelihood in which millennials will choose to live in a given area by improving livability across the parameters exemplified in this study. This mutually beneficial relationship provides added support to the notion that planners should develop solutions to improve livability within smart cities.
Created2015-05
141381-Thumbnail Image.png
Description

This study investigates the impact of urban form and landscaping type on the mid-afternoon microclimate in semi-arid Phoenix, Arizona. The goal is to find effective urban form and design strategies to ameliorate temperatures during the summer months. We simulated near-ground air temperatures for typical residential neighborhoods in Phoenix using the

This study investigates the impact of urban form and landscaping type on the mid-afternoon microclimate in semi-arid Phoenix, Arizona. The goal is to find effective urban form and design strategies to ameliorate temperatures during the summer months. We simulated near-ground air temperatures for typical residential neighborhoods in Phoenix using the three-dimensional microclimate model ENVI-met. The model was validated using weather observations from the North Desert Village (NDV) landscape experiment, located on the Arizona State University's Polytechnic campus. The NDV is an ideal site to determine the model's input parameters, since it is a controlled environment recreating three prevailing residential landscape types in the Phoenix metropolitan area (mesic, oasis, and xeric).

After validation, we designed five neighborhoods with different urban forms that represent a realistic cross-section of typical residential neighborhoods in Phoenix. The scenarios follow the Local Climate Zone (LCZ) classification scheme after Stewart and Oke. We then combined the neighborhoods with three landscape designs and, using ENVI-met, simulated microclimate conditions for these neighborhoods for a typical summer day. Results were analyzed in terms of mid-afternoon air temperature distribution and variation, ventilation, surface temperatures, and shading. Findings show that advection is important for the distribution of within-design temperatures and that spatial differences in cooling are strongly related to solar radiation and local shading patterns. In mid-afternoon, dense urban forms can create local cool islands. Our approach suggests that the LCZ concept is useful for planning and design purposes.

ContributorsMiddel, Ariane (Author) / Hab, Kathrin (Author) / Brazel, Anthony J. (Author) / Martin, Chris A. (Author) / Guhathakurta, Subhrajit (Author)
Created2013-12-01
Description

This study investigates the impact of urban form and landscaping type on the mid-afternoon microclimate in semi-arid Phoenix, Arizona. The goal is to find effective urban form and design strategies to ameliorate temperatures during the summer months. We simulated near-ground air temperatures for typical residential neighborhoods in Phoenix using the

This study investigates the impact of urban form and landscaping type on the mid-afternoon microclimate in semi-arid Phoenix, Arizona. The goal is to find effective urban form and design strategies to ameliorate temperatures during the summer months. We simulated near-ground air temperatures for typical residential neighborhoods in Phoenix using the three-dimensional microclimate model ENVI-met. The model was validated using weather observations from the North Desert Village (NDV) landscape experiment, located on the Arizona State University's Polytechnic campus. The NDV is an ideal site to determine the model's input parameters, since it is a controlled environment recreating three prevailing residential landscape types in the Phoenix metropolitan area (mesic, oasis, and xeric). After validation, we designed five neighborhoods with different urban forms that represent a realistic cross-section of typical residential neighborhoods in Phoenix. The scenarios follow the Local Climate Zone (LCZ) classification scheme after Stewart and Oke. We then combined the neighborhoods with three landscape designs and, using ENVI-met, simulated microclimate conditions for these neighborhoods for a typical summer day. Results were analyzed in terms of mid-afternoon air temperature distribution and variation, ventilation, surface temperatures, and shading. Findings show that advection is important for the distribution of within-design temperatures and that spatial differences in cooling are strongly related to solar radiation and local shading patterns. In mid-afternoon, dense urban forms can create local cool islands. Our approach suggests that the LCZ concept is useful for planning and design purposes.

ContributorsMiddel, Ariane (Author) / Hab, Kathrin (Author) / Brazel, Anthony J. (Author) / Martin, Chris A. (Author) / Guhathakurta, Subhrajit (Author)
Created2014-02