Matching Items (24)
Filtering by

Clear all filters

Description
Well-established model systems exist in four out of the seven major classes of vertebrates. These include the mouse, chicken, frog and zebrafish. Noticeably missing from this list is a reptilian model organism for comparative studies between the vertebrates and for studies of biological processes unique to reptiles. To help fill

Well-established model systems exist in four out of the seven major classes of vertebrates. These include the mouse, chicken, frog and zebrafish. Noticeably missing from this list is a reptilian model organism for comparative studies between the vertebrates and for studies of biological processes unique to reptiles. To help fill in this gap the green anole lizard, Anolis carolinensis, is being adapted as a model organism. Despite the recent release of the complete genomic sequence of the A. carolinensis, the lizard lacks some resources to aid researchers in their studies. Particularly, the lack of transcriptomic resources for lizard has made it difficult to identify genes complete with alternative splice forms and untranslated regions (UTRs). As part of this work the genome annotation for A. carolinensis was improved through next generation sequencing and assembly of the transcriptomes from 14 different adult and embryonic tissues. This revised annotation of the lizard will improve comparative studies between vertebrates, as well as studies within A. carolinensis itself, by providing more accurate gene models, which provide the bases for molecular studies. To demonstrate the utility of the improved annotations and reptilian model organism, the developmental process of somitogenesis in the lizard was analyzed and compared with other vertebrates. This study identified several key features both divergent and convergent between the vertebrates, which was not previously known before analysis of a reptilian model organism. The improved genome annotations have also allowed for molecular studies of tail regeneration in the lizard. With the annotation of 3' UTR sequences and next generation sequencing, it is now possible to do expressional studies of miRNA and predict their mRNA target transcripts at genomic scale. Through next generation small RNA sequencing and subsequent analysis, several differentially expressed miRNAs were identified in the regenerating tail, suggesting miRNA may play a key role in regulating this process in lizards. Through miRNA target prediction several key biological pathways were identified as potentially under the regulation of miRNAs during tail regeneration. In total, this work has both helped advance A. carolinensis as model system and displayed the utility of a reptilian model system.
ContributorsEckalbar, Walter L (Author) / Kusumi, Kenro (Thesis advisor) / Huentelman, Matthew (Committee member) / Rawls, Jeffery (Committee member) / Wilson-Rawls, Norma (Committee member) / Arizona State University (Publisher)
Created2012
137233-Thumbnail Image.png
Description
While a number of vertebrates, including fishes, salamanders, frogs, and lizards, display regenerative capacity, the process is not necessarily the same. It has been proposed that regeneration, while evolutionarily conserved, has diverged during evolution. However, the extent to which the mechanisms of regeneration have changed between taxa still remains elusive.

While a number of vertebrates, including fishes, salamanders, frogs, and lizards, display regenerative capacity, the process is not necessarily the same. It has been proposed that regeneration, while evolutionarily conserved, has diverged during evolution. However, the extent to which the mechanisms of regeneration have changed between taxa still remains elusive. In the salamander limb, cells dedifferentiate to a more plastic state and aggregate in the distal portion of the appendage to form a blastema, which is responsible for outgrowth and tissue development. In contrast, no such mechanism has been identified in lizards, and it is unclear to what extent evolutionary divergence between amniotes and anamniotes has altered this mechanism. Anolis carolinensis lizards are capable of regenerating their tails after stress-induced autotomy or self-amputation. In this investigation, the distribution of proliferating cells in early A. carolinensis tail regeneration was visualized by immunohistochemistry to examine the location and quantity of proliferating cells. An aggregate of proliferating cells at the distal region of the regenerate is considered indicative of blastema formation. Proliferating cell nuclear antigen (PCNA) and minichromosome maintenance complex component 2 (MCM2) were utilized as proliferation markers. Positive cells were counted for each tail (n=9, n=8 respectively). The percent of proliferating cells at the tip and base of the regenerating tail were compared with a one-way ANOVA statistical test. Both markers showed no significant difference (P=0.585, P=0.603 respectively) indicating absence of a blastema-like structure. These results suggest an alternative mechanism of regeneration in lizards and potentially other amniotes.
ContributorsTokuyama, Minami Adrianne (Author) / Kusumi, Kenro (Thesis director) / Wilson-Rawls, Jeanne (Committee member) / Menke, Douglas (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of Life Sciences (Contributor)
Created2014-05
172909-Thumbnail Image.png
Description

In the early 2000s, Manjong Han, Xiaodang Yang, Jennifer Farrington, and Ken Muneoka investigated how genes and proteins in fetal mice (Mus musculus) influenced those fetal mice to regenerate severed toes at Tulane University in New Orleans, Louisiana. The group used hind limbs from mice to show how the gene

In the early 2000s, Manjong Han, Xiaodang Yang, Jennifer Farrington, and Ken Muneoka investigated how genes and proteins in fetal mice (Mus musculus) influenced those fetal mice to regenerate severed toes at Tulane University in New Orleans, Louisiana. The group used hind limbs from mice to show how the gene Msx1 (Homeobox 7) functions in regenerating amputated digits. The researchers showed that in the process of regenerating digit tips, Msx1 genes make products that regulate or influence other genes, such as the Bone Morphogenetic Protein 4 gene (BMP4 gene), to produce proteins, such as the BMP4 proteins. The researchers also showed that BMP4 proteins, which are produced from the BMP4 gene, function in tissues during the process of limb development. Furthermore, while Msx1 genes regulate other genes during the process of regeneration, they don't produce proteins otherwise needed to organize cells in the regeneration of digit tissues. The group published their results in 2003 as Digit Regeneration Is Regulated by Msx1 and BMP4 in Fetal Mice.

Created2015-04-13
173251-Thumbnail Image.png
Description

In 2012, a team of scientists across the US conducted an experiment to find the mechanism that allowed a group of flatworms, planarians, to regenerate any body part. The group included Danielle Wenemoser, Sylvain Lapan, Alex Wilkinson, George Bell, and Peter Reddien. They aimed to identify genes that are expressed

In 2012, a team of scientists across the US conducted an experiment to find the mechanism that allowed a group of flatworms, planarians, to regenerate any body part. The group included Danielle Wenemoser, Sylvain Lapan, Alex Wilkinson, George Bell, and Peter Reddien. They aimed to identify genes that are expressed by planarians in response to wounds that initiated a regenerative mechanism. The researchers determined several genes as important for tissue regeneration. The investigation helped scientists explain how regeneration is initiated and describe the overall regenerative mechanism of whole organisms.

Created2017-05-09
173286-Thumbnail Image.png
Description

Regeneration is a fascinating phenomenon. The fact that many organisms have the capacity to regenerate lost parts and even remake complete copies of themselves is difficult to fathom; so difficult, in fact, that for a very long time people were reluctant to believe regeneration actually took place. It

Regeneration is a fascinating phenomenon. The fact that many organisms have the capacity to regenerate lost parts and even remake complete copies of themselves is difficult to fathom; so difficult, in fact, that for a very long time people were reluctant to believe regeneration actually took place. It seemed unbelievable that some organisms could re-grow lost limbs, organs, and other body parts. If only we could do the same! Unfortunately, our regenerative capacities are limited to hair, nails, and skin, while the liver and a few other tissues display more restricted regenerative abilities. What if we could grow back lost limbs, or damaged organs? This question has inspired many stories, dating back to Greek mythology, wherein Prometheus was doomed to regenerate his liver after it had been devoured by birds. Regeneration has permeated many imaginations; it has appeared in many literary and religious texts, and has also provoked much interest from the scientific community.

Created2009-06-10
173757-Thumbnail Image.png
Description

Alejandro Sánchez Alvarado is a Professor of Neurobiology and Anatomy at the University of Utah School of Medicine and is also a Howard Hughes Medical Institute Investigator. Born in Caracas, Venezuela, 24 February 1964, Sánchez Alvarado left his home to pursue education in the United States, where he received

Alejandro Sánchez Alvarado is a Professor of Neurobiology and Anatomy at the University of Utah School of Medicine and is also a Howard Hughes Medical Institute Investigator. Born in Caracas, Venezuela, 24 February 1964, Sánchez Alvarado left his home to pursue education in the United States, where he received a Bachelor of Science in molecular biology and chemistry from Vanderbilt University in 1986 and a Doctorate in pharmacology and cell biophysics at the University of Cincinnati College of Medicine in 1992. During his PhD studies Sánchez Alvarado examined the in vitro differentiation of mouse embryonic stem cells. In 1994 he began a postdoctoral position at the Carnegie Institution of Washington's Department of Embryology, where he was appointed a staff associate in 1995. In 2002 he became an Associate Professor at the University of Utah School of Medicine in the Department of Neurobiology and Anatomy, and was promoted to Professor in 2005.

Created2010-06-10
173776-Thumbnail Image.png
Description

The purpose of regenerative medicine, especially tissue engineering, is to replace damaged tissue with new tissue that will allow the body to resume normal function. The uniqueness of tissue engineering is that it can restore normal structure in addition to repairing tissue function, and is often accomplished using stem cells.

The purpose of regenerative medicine, especially tissue engineering, is to replace damaged tissue with new tissue that will allow the body to resume normal function. The uniqueness of tissue engineering is that it can restore normal structure in addition to repairing tissue function, and is often accomplished using stem cells. The first type of tissue engineering using stem cells was hematopoietic stem cell transplantation (HSCT), a surgical procedure in which hematopoietic stem cells (HSCs) are infused into a host to treat a variety of blood diseases, cancers, and immunodeficiencies. While there is a standard procedure for the infusion of these cells into a donor, variations in the sources of hematopoietic stem cells, and in the relationship between donor and recipient, do produce some variability in the procedure.

Created2010-10-11
173777-Thumbnail Image.png
Description

For Thomas Hunt Morgan clarity was of utmost importance. He was therefore frustrated with the many disparate, disconnected terms that were used to refer to similar, if not the same, regenerative processes within organisms. When Morgan wrote Regeneration in 1901 there had been many different terms developed and

For Thomas Hunt Morgan clarity was of utmost importance. He was therefore frustrated with the many disparate, disconnected terms that were used to refer to similar, if not the same, regenerative processes within organisms. When Morgan wrote Regeneration in 1901 there had been many different terms developed and adopted by various investigators to describe their observations. As a result there were many inconsistencies making it difficult to discuss results comparatively and also making it more challenging to generalize. Defining terms was a priority for Morgan. He appreciated the diversity of phenomena that had been studied and sought to develop language to facilitate further studies and interpretations.

Created2009-06-09
173799-Thumbnail Image.png
Description

Michael D. West is a biomedical entrepreneur and investigator whose aim has been to extend human longevity with biomedical interventions. His focus has ranged from the development of telomerase-based therapeutics to the application of human embryonic stem cells in regenerative medicine. Throughout his eventful career, West has pursued novel and

Michael D. West is a biomedical entrepreneur and investigator whose aim has been to extend human longevity with biomedical interventions. His focus has ranged from the development of telomerase-based therapeutics to the application of human embryonic stem cells in regenerative medicine. Throughout his eventful career, West has pursued novel and sometimes provocative ideas in a fervent, self-publicizing manner. As of 2009, West advocated using human somatic cell nuclear transfer techniques to derive human embryonic stem cells for therapeutic practice. Through his testimonies before the US Senate, articles, and even controversies generated by his own research and claims, West has played an important role in shaping the public debate over human cloning and embryonic stem cell research.

Created2010-06-23
173718-Thumbnail Image.png
Description

Tissue engineering is a field of regenerative medicine that integrates the knowledge of scientists, physicians, and engineers into the construction or reconstruction of human tissue. Practitioners of tissue engineering seek to repair, replace, maintain, and enhance the abilities of a specific tissue or organ by means of living cells. More

Tissue engineering is a field of regenerative medicine that integrates the knowledge of scientists, physicians, and engineers into the construction or reconstruction of human tissue. Practitioners of tissue engineering seek to repair, replace, maintain, and enhance the abilities of a specific tissue or organ by means of living cells. More often than not stem cells are the form of living cells used in this technology. Tissue engineering is one of the disciplines involved in translating knowledge of developmental biology into the clinical setting. One focus that this field has taken is the understanding of tissue and organ development during embryogenesis, as this knowledge will open avenues to new applications of this technology.

Created2010-10-29