Matching Items (17)
Filtering by

Clear all filters

Description
Well-established model systems exist in four out of the seven major classes of vertebrates. These include the mouse, chicken, frog and zebrafish. Noticeably missing from this list is a reptilian model organism for comparative studies between the vertebrates and for studies of biological processes unique to reptiles. To help fill

Well-established model systems exist in four out of the seven major classes of vertebrates. These include the mouse, chicken, frog and zebrafish. Noticeably missing from this list is a reptilian model organism for comparative studies between the vertebrates and for studies of biological processes unique to reptiles. To help fill in this gap the green anole lizard, Anolis carolinensis, is being adapted as a model organism. Despite the recent release of the complete genomic sequence of the A. carolinensis, the lizard lacks some resources to aid researchers in their studies. Particularly, the lack of transcriptomic resources for lizard has made it difficult to identify genes complete with alternative splice forms and untranslated regions (UTRs). As part of this work the genome annotation for A. carolinensis was improved through next generation sequencing and assembly of the transcriptomes from 14 different adult and embryonic tissues. This revised annotation of the lizard will improve comparative studies between vertebrates, as well as studies within A. carolinensis itself, by providing more accurate gene models, which provide the bases for molecular studies. To demonstrate the utility of the improved annotations and reptilian model organism, the developmental process of somitogenesis in the lizard was analyzed and compared with other vertebrates. This study identified several key features both divergent and convergent between the vertebrates, which was not previously known before analysis of a reptilian model organism. The improved genome annotations have also allowed for molecular studies of tail regeneration in the lizard. With the annotation of 3' UTR sequences and next generation sequencing, it is now possible to do expressional studies of miRNA and predict their mRNA target transcripts at genomic scale. Through next generation small RNA sequencing and subsequent analysis, several differentially expressed miRNAs were identified in the regenerating tail, suggesting miRNA may play a key role in regulating this process in lizards. Through miRNA target prediction several key biological pathways were identified as potentially under the regulation of miRNAs during tail regeneration. In total, this work has both helped advance A. carolinensis as model system and displayed the utility of a reptilian model system.
ContributorsEckalbar, Walter L (Author) / Kusumi, Kenro (Thesis advisor) / Huentelman, Matthew (Committee member) / Rawls, Jeffery (Committee member) / Wilson-Rawls, Norma (Committee member) / Arizona State University (Publisher)
Created2012
137233-Thumbnail Image.png
Description
While a number of vertebrates, including fishes, salamanders, frogs, and lizards, display regenerative capacity, the process is not necessarily the same. It has been proposed that regeneration, while evolutionarily conserved, has diverged during evolution. However, the extent to which the mechanisms of regeneration have changed between taxa still remains elusive.

While a number of vertebrates, including fishes, salamanders, frogs, and lizards, display regenerative capacity, the process is not necessarily the same. It has been proposed that regeneration, while evolutionarily conserved, has diverged during evolution. However, the extent to which the mechanisms of regeneration have changed between taxa still remains elusive. In the salamander limb, cells dedifferentiate to a more plastic state and aggregate in the distal portion of the appendage to form a blastema, which is responsible for outgrowth and tissue development. In contrast, no such mechanism has been identified in lizards, and it is unclear to what extent evolutionary divergence between amniotes and anamniotes has altered this mechanism. Anolis carolinensis lizards are capable of regenerating their tails after stress-induced autotomy or self-amputation. In this investigation, the distribution of proliferating cells in early A. carolinensis tail regeneration was visualized by immunohistochemistry to examine the location and quantity of proliferating cells. An aggregate of proliferating cells at the distal region of the regenerate is considered indicative of blastema formation. Proliferating cell nuclear antigen (PCNA) and minichromosome maintenance complex component 2 (MCM2) were utilized as proliferation markers. Positive cells were counted for each tail (n=9, n=8 respectively). The percent of proliferating cells at the tip and base of the regenerating tail were compared with a one-way ANOVA statistical test. Both markers showed no significant difference (P=0.585, P=0.603 respectively) indicating absence of a blastema-like structure. These results suggest an alternative mechanism of regeneration in lizards and potentially other amniotes.
ContributorsTokuyama, Minami Adrianne (Author) / Kusumi, Kenro (Thesis director) / Wilson-Rawls, Jeanne (Committee member) / Menke, Douglas (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of Life Sciences (Contributor)
Created2014-05
148500-Thumbnail Image.png
Description

As life expectancy increases worldwide, age related diseases are becoming greater health concerns. One of the most prevalent age-related diseases in the United States is dementia, with Alzheimer’s disease (AD) being the most common form, accounting for 60-80% of cases. Genetics plays a large role in a person’s risk of

As life expectancy increases worldwide, age related diseases are becoming greater health concerns. One of the most prevalent age-related diseases in the United States is dementia, with Alzheimer’s disease (AD) being the most common form, accounting for 60-80% of cases. Genetics plays a large role in a person’s risk of developing AD. Familial AD, which makes up less than 1% of all AD cases, is caused by autosomal dominant gene mutations and has almost 100% penetrance. Genetic risk factors are believed to make up about 49%-79% of the risk in sporadic cases. Many different genetic risk factors for both familial and sporadic AD have been identified, but there is still much work to be done in the field of AD, especially in non-Caucasian populations. This review summarizes the three major genes responsible for familial AD, namely APP, PSEN1 and PSEN2. Also discussed are seven identified genetic risk factors for sporadic AD, single nucleotide polymorphisms in the APOE, ABCA7, NEDD9, CASS4, PTK2B, CLU, and PICALM genes. An overview of the main function of the proteins associated with the genes is given, along with the supposed connection to AD pathology.

ContributorsRichey, Alexandra Emmeline (Author) / Brafman, David (Thesis director) / Raman, Sreedevi (Committee member) / School of International Letters and Cultures (Contributor) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
132624-Thumbnail Image.png
Description
Effectively modeling Alzheimer’s disease will lend to a more comprehensive
understanding of the disease pathology, more efficacious drug development and
regenerative medicine as a form of treatment. There are limitations with current
transgenic mouse models of Alzheimer’s disease and the study of post mortem brain tissue of Alzheimer’s diseases patients. Stem cell models

Effectively modeling Alzheimer’s disease will lend to a more comprehensive
understanding of the disease pathology, more efficacious drug development and
regenerative medicine as a form of treatment. There are limitations with current
transgenic mouse models of Alzheimer’s disease and the study of post mortem brain tissue of Alzheimer’s diseases patients. Stem cell models can overcome the lack of clinical relevance and impracticality associated with current models. Ideally, the use of stem cell models provides the foundation to study the biochemical and physiological aspects of Alzheimer’s disease, but at the cellular level. Moreover, the future of drug development and disease modeling can be improved by developing a reproducible and well-characterized model of AD that can be scaled up to meet requirements for basic and translational applications. Characterization and analysis of a heterogenic neuronal culture developed from induced pluripotent stem cells calls for the understanding of single cell identity and cell viability. A method to analyze RNA following intracellular sorting was developed in order to analyze single cell identity of a heterogenic population
of human induced pluripotent stem cells and neural progenitor cells. The population was intracellularly stained and sorted for Oct4. RNA was isolated and analyzed with qPCR, which demonstrated expected expression profiles for Oct4+ and Oct4- cells. In addition, a protocol to label cells with pO2 sensing nanoprobes was developed to assess cell viability. Non-destructive nanoprobe up-take by neural progenitor cells was assessed with fluorescent imaging and flow cytometry. Nanoprobe labeled neurons were cultured long-term and continued to fluoresce at day 28. The proof of concept experiments demonstrated will be further expanded upon and utilized in developing a more clinically relevant and cost-effective model of Alzheimer’s disease with downstream applications
in drug development and regenerative medicine.
ContributorsKnittel, Jacob James (Author) / Brafman, David (Thesis director) / Salvatore, Oddo (Committee member) / School of Life Sciences (Contributor) / Dean, W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133892-Thumbnail Image.png
Description
Alzheimer’s Disease (AD) affects over 5 million individuals in the U.S. and has a direct cost estimated in excess of $200 billion per year. Broadly speaking, there are two forms of AD—early-onset, familial AD (FAD) and late-onset-sporadic AD (SAD). Animal models of AD, which rely on the overexpression of FAD-related

Alzheimer’s Disease (AD) affects over 5 million individuals in the U.S. and has a direct cost estimated in excess of $200 billion per year. Broadly speaking, there are two forms of AD—early-onset, familial AD (FAD) and late-onset-sporadic AD (SAD). Animal models of AD, which rely on the overexpression of FAD-related mutations, have provided important insights into the disease. However, these models do not display important disease-related pathologies and have been limited in their ability to model the complex genetics associated with SAD.

Advances in cellular reprogramming, have enabled the generation of in vitro disease models that can be used to dissect disease mechanisms and evaluate potential therapeutics. To that end, efforts by many groups, including the Brafman laboratory, to generated patient-specific hiPSCs have demonstrated the promise of studying AD in a simplified and accessible system. However, neurons generated from these hiPSCs have shown some, but not all, of the early molecular and cellular hallmarks associated with the disease. Additionally, phenotypes and pathological hallmarks associated with later stages of the human disease have not been observed with current hiPSC-based systems. Further, disease relevant phenotypes in neurons generated from SAD hiPSCs have been highly variable or largely absent. Finally, the reprogramming process erases phenotypes associated with cellular aging and, as a result, iPSC-derived neurons more closely resemble fetal brain rather than adult brain.

It is well-established that in vivo cells reside within a complex 3-D microenvironment that plays a significant role in regulating cell behavior. Signaling and other cellular functions, such as gene expression and differentiation potential, differ in 3-D cultures compared with 2-D substrates. Nonetheless, previous studies using AD hiPSCs have relied on 2-D neuronal culture models that do not reflect the 3-D complexity of native brain tissue, and therefore, are unable to replicate all aspects of AD pathogenesis. Further, the reprogramming process erases cellular aging phenotypes. To address these limitations, this project aimed to develop bioengineering methods for the generation of 3-D organoid-based cultures that mimic in vivo cortical tissue, and to generate an inducible gene repression system to recapitulate cellular aging hallmarks.
ContributorsBounds, Lexi Rose (Author) / Brafman, David (Thesis director) / Wang, Xiao (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
193518-Thumbnail Image.png
Description
APOE encodes for a lipid transport protein and has three allelic variants-APOE ε2, ε3 and ε4 each of which differentially modulate the risk for Alzheimer’s disease (AD). The presence of the ε4 allele of APOE greatly increases AD risk compared to the presence of the more prevalent and risk neutral

APOE encodes for a lipid transport protein and has three allelic variants-APOE ε2, ε3 and ε4 each of which differentially modulate the risk for Alzheimer’s disease (AD). The presence of the ε4 allele of APOE greatly increases AD risk compared to the presence of the more prevalent and risk neutral ε3 allele. An imbalance in the generation and clearance of amyloid beta (Aβ) peptides has been hypothesized to play a key role in driving the disease. APOE4 impacts several AD-relevant cellular processes. However, it is unclear whether these effects represent a gain of toxic function or a loss of function, specifically as it relates to modulating amyloid beta (Aβ) levels. Here, a set of APOE knockout (KO) and APOE4 isogenic human induced pluripotent stem cells (hiPSCs) were generated from a parental APOE3 hiPSC line with a highly penetrant familial AD (fAD) mutation to investigate this with respect to Aβ secretion in neural cultures and Aβ uptake in monocultures of microglia-like cells (iMGLs). Conversion of APOE3 to E4 as well as functionally knocking APOE out from the APOE3 parental line, result in elevated Aβ levels in neural cultures, likely through multiple mechanisms including the altered processing of the precursor protein to Aβ called amyloid precursor protein (APP). In pure neuronal cultures, a shift in the processing of APP was observed with the Aβ-generating amyloidogenic pathway being favored in both APOE3 as well as APOE4 neurons compared to APOE KO neurons, with APOE4 neurons exhibiting a greater shift. In iMGLs derived from the isogenic hiPSC lines, expression of APOE, regardless of the isoform, lowered the uptake of Aβ. Overall, APOE4 modulates Aβ levels through distinct loss of protective and gain of function effects. Dissecting these effects would contribute towards a better understanding of the design of potential APOE-targeted therapeutics in the future.
ContributorsRajaram Srinivasan, Gayathri (Author) / Brafman, David (Thesis advisor) / Plaisier, Christopher (Committee member) / Newbern, Jason (Committee member) / Stabenfeldt, Sarah (Committee member) / Wang, Xiao (Committee member) / Arizona State University (Publisher)
Created2024
156541-Thumbnail Image.png
Description
Neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, or amyotrophic lateral sclerosis are defined by the loss of several types of neurons and glial cells within the central nervous system (CNS). Combatting these diseases requires a robust population of relevant cell types that can be employed in cell therapies, drug

Neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, or amyotrophic lateral sclerosis are defined by the loss of several types of neurons and glial cells within the central nervous system (CNS). Combatting these diseases requires a robust population of relevant cell types that can be employed in cell therapies, drug screening, or patient specific disease modeling. Human induced pluripotent stem cells (hiPSC)-derived neural progenitor cells (hNPCs) have the ability to self-renew indefinitely and differentiate into the various neuronal and glial cell types of the CNS. In order to realize the potential of hNPCs, it is necessary to develop a xeno-free scalable platform for effective expansion and differentiation. Previous work in the Brafman lab led to the engineering of a chemically defined substrate—vitronectin derived peptide (VDP), which allows for the long-term expansion and differentiation of hNPCs. In this work, we use this substrate as the basis for a microcarrier (MC)-based suspension culture system. Several independently derived hNPC lines were cultured on MCs for multiple passages as well as efficiently differentiated to neurons. Finally, this MC-based system was used in conjunction with a low shear rotating wall vessel (RWV) bioreactor for the integrated, large-scale expansion and neuronal differentiation of hNPCs. Finally, VDP was shown to support the differentiation of hNPCs into functional astrocytes. Overall, this fully defined and scalable biomanufacturing system will facilitate the generation of hNPCs and their derivatives in quantities necessary for basic and translational applications.
ContributorsMorgan, Daylin (Author) / Brafman, David (Thesis advisor) / Stabenfeldt, Sarah (Committee member) / Wang, Xiao (Committee member) / Arizona State University (Publisher)
Created2018
154028-Thumbnail Image.png
Description
In the U.S., breast cancer (BC) incidences among African American (AA) and CA (CA) women are similar, yet AA women have a significantly higher mortality rate. In addition, AA women often present with tumors at a younger age, with a higher tumor grade/stage and are more likely to be diagnosed

In the U.S., breast cancer (BC) incidences among African American (AA) and CA (CA) women are similar, yet AA women have a significantly higher mortality rate. In addition, AA women often present with tumors at a younger age, with a higher tumor grade/stage and are more likely to be diagnosed with the highly aggressive triple-negative breast cancer (TNBC) subtype. Even within the TNBC subtype, AA women have a worse clinical outcome compared to CA. Although multiple socio-economic and lifestyle factors may contribute to these observed health disparities, it is essential that the underlying biological differences between CA and AA TNBC are identified. In this study, gene expression profiling was performed on archived FFPE samples, obtained from CA and AA women diagnosed with early stage TNBC. Initial analysis revealed a pattern of differential expression in the AA cohort compared to CA. Further molecular characterization results showed that the AA cohort segregated into 3-TNBC molecular subtypes; Basal-like (BL2), Immunomodulatory (IM) and Mesenchymal (M). Gene expression analyses resulted in 190 differentially expressed genes between the AA and CA cohorts. Pathway enrichment analysis demonstrated that differentially expressed genes were over-represented in cytoskeletal remodeling, cell adhesion, tight junctions, and immune response in the AA TNBC -cohort. Furthermore, genes in the Wnt/β-catenin pathway were over-expressed. These results were validated using RT-qPCR on an independent cohort of FFPE samples from AA and CA women with early stage TNBC, and identified Caveolin-1 (CAV1) as being significantly expressed in the AA-TNBC cohort. Furthermore, CAV1 was shown to be highly expressed in a cell line panel of TNBC, in particular, those of the mesenchymal and basal-like molecular subtype. Finally, silencing of CAV1 expression by siRNA resulted in a significant decrease in proliferation in each of the TNBC cell lines. These observations suggest that CAV1 expression may contribute to the more aggressive phenotype observed in AA women diagnosed with TNBC.
ContributorsGetz, Julie (Author) / Baumbach-Reardon, Lisa L (Thesis advisor) / Lake, Douglas F (Thesis advisor) / Bussey, Kimberly (Committee member) / Kusumi, Kenro (Committee member) / Arizona State University (Publisher)
Created2015
153977-Thumbnail Image.png
Description
Rapid advancements in genomic technologies have increased our understanding of rare human disease. Generation of multiple types of biological data including genetic variation from genome or exome, expression from transcriptome, methylation patterns from epigenome, protein complexity from proteome and metabolite information from metabolome is feasible. "Omics" tools provide comprehensive view

Rapid advancements in genomic technologies have increased our understanding of rare human disease. Generation of multiple types of biological data including genetic variation from genome or exome, expression from transcriptome, methylation patterns from epigenome, protein complexity from proteome and metabolite information from metabolome is feasible. "Omics" tools provide comprehensive view into biological mechanisms that impact disease trait and risk. In spite of available data types and ability to collect them simultaneously from patients, researchers still rely on their independent analysis. Combining information from multiple biological data can reduce missing information, increase confidence in single data findings, and provide a more complete view of genotype-phenotype correlations. Although rare disease genetics has been greatly improved by exome sequencing, a substantial portion of clinical patients remain undiagnosed. Multiple frameworks for integrative analysis of genomic and transcriptomic data are presented with focus on identifying functional genetic variations in patients with undiagnosed, rare childhood conditions. Direct quantitation of X inactivation ratio was developed from genomic and transcriptomic data using allele specific expression and segregation analysis to determine magnitude and inheritance mode of X inactivation. This approach was applied in two families revealing non-random X inactivation in female patients. Expression based analysis of X inactivation showed high correlation with standard clinical assay. These findings improved understanding of molecular mechanisms underlying X-linked disorders. In addition multivariate outlier analysis of gene and exon level data from RNA-seq using Mahalanobis distance, and its integration of distance scores with genomic data found genotype-phenotype correlations in variant prioritization process in 25 families. Mahalanobis distance scores revealed variants with large transcriptional impact in patients. In this dataset, frameshift variants were more likely result in outlier expression signatures than other types of functional variants. Integration of outlier estimates with genetic variants corroborated previously identified, presumed causal variants and highlighted new candidate in previously un-diagnosed case. Integrative genomic approaches in easily attainable tissue will facilitate the search for biomarkers that impact disease trait, uncover pharmacogenomics targets, provide novel insight into molecular underpinnings of un-characterized conditions, and help improve analytical approaches that use large datasets.
ContributorsSzelinger, Szabolcs (Author) / Craig, David W. (Thesis advisor) / Kusumi, Kenro (Thesis advisor) / Narayan, Vinodh (Committee member) / Rosenberg, Michael S. (Committee member) / Huentelman, Matthew J (Committee member) / Arizona State University (Publisher)
Created2015
153689-Thumbnail Image.png
Description
Damage to the central nervous system due to spinal cord or traumatic brain injury, as well as degenerative musculoskeletal disorders such as arthritis, drastically impact the quality of life. Regeneration of complex structures is quite limited in mammals, though other vertebrates possess this ability. Lizards are the most closely related

Damage to the central nervous system due to spinal cord or traumatic brain injury, as well as degenerative musculoskeletal disorders such as arthritis, drastically impact the quality of life. Regeneration of complex structures is quite limited in mammals, though other vertebrates possess this ability. Lizards are the most closely related organism to humans that can regenerate de novo skeletal muscle, hyaline cartilage, spinal cord, vasculature, and skin. Progress in studying the cellular and molecular mechanisms of lizard regeneration has previously been limited by a lack of genomic resources. Building on the release of the genome of the green anole, Anolis carolinensis, we developed a second generation, robust RNA-Seq-based genome annotation, and performed the first transcriptomic analysis of tail regeneration in this species. In order to investigate gene expression in regenerating tissue, we performed whole transcriptome and microRNA transcriptome analysis of regenerating tail tip and base and associated tissues, identifying key genetic targets in the regenerative process. These studies have identified components of a genetic program for regeneration in the lizard that includes both developmental and adult repair mechanisms shared with mammals, indicating value in the translation of these findings to future regenerative therapies.
ContributorsHutchins, Elizabeth (Author) / Kusumi, Kenro (Thesis advisor) / Rawls, Jeffrey A. (Committee member) / Denardo, Dale F. (Committee member) / Huentelman, Matthew J. (Committee member) / Arizona State University (Publisher)
Created2015