Matching Items (17)
Filtering by

Clear all filters

149899-Thumbnail Image.png
Description
Social insect colonies exhibit striking diversity in social organization. Included in this overwhelming variation in structure are differences in colony queen number. The number of queens per colony varies both intra- and interspecifically and has major impacts on the social dynamics of a colony and the fitness of its members.

Social insect colonies exhibit striking diversity in social organization. Included in this overwhelming variation in structure are differences in colony queen number. The number of queens per colony varies both intra- and interspecifically and has major impacts on the social dynamics of a colony and the fitness of its members. To understand the evolutionary transition from single to multi-queen colonies, I examined a species which exhibits variation both in mode of colony founding and in the queen number of mature colonies. The California harvester ant Pogonomyrmex californicus exhibits both variation in the number of queens that begin a colony (metrosis) and in the number of queens in adult colonies (gyny). Throughout most of its range, colonies begin with one queen (haplometrosis) but in some populations multiple queens cooperate to initiate colonies (pleometrosis). I present results that confirm co-foundresses are unrelated. I also map the geographic occurrence of pleometrotic populations and show that the phenomenon appears to be localized in southern California and Northern Baja California. Additionally, I provide genetic evidence that pleometrosis leads to primary polygyny (polygyny developing from pleometrosis) a phenomenon which has received little attention and is poorly understood. Phylogenetic and haplotype analyses utilizing mitochondrial markers reveal that populations of both behavioral types in California are closely related and have low mitochondrial diversity. Nuclear markers however, indicate strong barriers to gene flow between focal populations. I also show that intrinsic differences in queen behavior lead to the two types of populations observed. Even though populations exhibit strong tendencies on average toward haplo- or pleometrosis, within population variation exists among queens for behaviors relevant to metrosis and gyny. These results are important in understanding the dynamics and evolutionary history of a distinct form of cooperation among unrelated social insects. They also help to understand the dynamics of intraspecific variation and the conflicting forces of local adaptation and gene flow.
ContributorsOverson, Rick P (Author) / Gadau, Jürgen (Thesis advisor) / Fewell, Jennifer H (Committee member) / Hölldobler, Bert (Committee member) / Johnson, Robert A. (Committee member) / Liebig, Jürgen (Committee member) / Arizona State University (Publisher)
Created2011
151344-Thumbnail Image.png
Description
At the heart of every eusocial insect colony is a reproductive division of labor. This division can emerge through dominance interactions at the adult stage or through the production of distinct queen and worker castes at the larval stage. In both cases, this division depends on plasticity within an individual

At the heart of every eusocial insect colony is a reproductive division of labor. This division can emerge through dominance interactions at the adult stage or through the production of distinct queen and worker castes at the larval stage. In both cases, this division depends on plasticity within an individual to develop reproductive characteristics or serve as a worker. In order to gain insight into the evolution of reproductive plasticity in the social insects, I investigated caste determination and dominance in the ant Harpegnathos saltator, a species that retains a number of ancestral characteristics. Treatment of worker larvae with a juvenile hormone (JH) analog induced late-instar larvae to develop as queens. At the colony level, workers must have a mechanism to regulate larval development to prevent queens from developing out of season. I identified a new behavior in H. saltator where workers bite larvae to inhibit queen determination. Workers could identify larval caste based on a chemical signal specific to queen-destined larvae, and the production of this signal was directly linked to increased JH levels. This association provides a connection between the physiological factors that induce queen development and the production of a caste-specific larval signal. In addition to caste determination at the larval stage, adult workers of H. saltator compete to establish a reproductive hierarchy. Unlike other social insects, dominance in H. saltator was not related to differences in JH or ecdysteroid levels. Instead, changes in brain levels of biogenic amines, particularly dopamine, were correlated with dominance and reproductive status. Receptor genes for dopamine were expressed in both the brain and ovaries of H. saltator, and this suggests that dopamine may coordinate changes in behavior at the neurological level with ovarian status. Together, these studies build on our understanding of reproductive plasticity in social insects and provide insight into the evolution of a reproductive division of labor.
ContributorsPenick, Clint A (Author) / Liebig, Jürgen (Thesis advisor) / Brent, Colin (Committee member) / Gadau, Jürgen (Committee member) / Hölldobler, Bert (Committee member) / Rutowski, Ron (Committee member) / Arizona State University (Publisher)
Created2012
152029-Thumbnail Image.png
Description
Induced pluripotent stem cells (iPSCs) are an intriguing approach for neurological disease modeling, because neural lineage-specific cell types that retain the donors' complex genetics can be established in vitro. The statistical power of these iPSC-based models, however, is dependent on accurate diagnoses of the somatic cell donors; unfortunately, many neurodegenerative

Induced pluripotent stem cells (iPSCs) are an intriguing approach for neurological disease modeling, because neural lineage-specific cell types that retain the donors' complex genetics can be established in vitro. The statistical power of these iPSC-based models, however, is dependent on accurate diagnoses of the somatic cell donors; unfortunately, many neurodegenerative diseases are commonly misdiagnosed in live human subjects. Postmortem histopathological examination of a donor's brain, combined with premortem clinical criteria, is often the most robust approach to correctly classify an individual as a disease-specific case or unaffected control. We describe the establishment of primary dermal fibroblasts cells lines from 28 autopsy donors. These fibroblasts were used to examine the proliferative effects of establishment protocol, tissue amount, biopsy site, and donor age. As proof-of-principle, iPSCs were generated from fibroblasts from a 75-year-old male, whole body donor, defined as an unaffected neurological control by both clinical and histopathological criteria. To our knowledge, this is the first study describing autopsy donor-derived somatic cells being used for iPSC generation and subsequent neural differentiation. This unique approach also enables us to compare iPSC-derived cell cultures to endogenous tissues from the same donor. We utilized RNA sequencing (RNA-Seq) to evaluate the transcriptional progression of in vitro-differentiated neural cells (over a timecourse of 0, 35, 70, 105 and 140 days), and compared this with donor-identical temporal lobe tissue. We observed in vitro progression towards the reference brain tissue, supported by (i) a significant increasing monotonic correlation between the days of our timecourse and the number of actively transcribed protein-coding genes and long intergenic non-coding RNAs (lincRNAs) (P < 0.05), consistent with the transcriptional complexity of the brain, (ii) an increase in CpG methylation after neural differentiation that resembled the epigenomic signature of the endogenous tissue, and (iii) a significant decreasing monotonic correlation between the days of our timecourse and the percent of in vitro to brain-tissue differences (P < 0.05) for tissue-specific protein-coding genes and all putative lincRNAs. These studies support the utility of autopsy donors' somatic cells for iPSC-based neurological disease models, and provide evidence that in vitro neural differentiation can result in physiologically progression.
ContributorsHjelm, Brooke E (Author) / Craig, David W. (Thesis advisor) / Wilson-Rawls, Norma J. (Thesis advisor) / Huentelman, Matthew J. (Committee member) / Mason, Hugh S. (Committee member) / Kusumi, Kenro (Committee member) / Arizona State University (Publisher)
Created2013
150864-Thumbnail Image.png
Description
Skeletal muscles arise from the myotome compartment of the somites that form during vertebrate embryonic development. Somites are transient structures serve as the anlagen for the axial skeleton, skeletal muscle, tendons, and dermis, as well as imposing the metameric patterning of the axial musculoskeletal system, peripheral nerves, and vasculature. Classic

Skeletal muscles arise from the myotome compartment of the somites that form during vertebrate embryonic development. Somites are transient structures serve as the anlagen for the axial skeleton, skeletal muscle, tendons, and dermis, as well as imposing the metameric patterning of the axial musculoskeletal system, peripheral nerves, and vasculature. Classic studies have described the role of Notch, Wnt, and FGF signaling pathways in controlling somite formation and muscle formation. However, little is known about the transformation of myotome compartments into identifiable post-natal muscle groups. Using a mouse model, I have undertaken an evaluation of morphological events, including hypertrophy and hyperplasia, related to the formation of several muscles positioned along the dorsal surface of the vertebrae and ribs. Lunatic fringe (Lfng) deficient embryos and neonates were also examined to further understand the role of the Notch pathway in these processes as it is a modulator of the Notch receptor and plays an important role in defining somite borders and anterior-posterior patterning in many vertebrates. Lunatic fringe deficient embryos showed defects in muscle fiber hyperplasia and hypertrophy in the iliocostalis and longissimus muscles of the erector spinae group. This novel data suggests an additional role for Lfng and the Notch signaling pathway in embryonic and fetal muscle development.
ContributorsDe Ruiter, Corinne (Author) / Rawls, J. Alan (Thesis advisor) / Wilson-Rawls, Jeanne (Committee member) / Kusumi, Kenro (Committee member) / Fisher, Rebecca E. (Committee member) / Arizona State University (Publisher)
Created2012
171918-Thumbnail Image.png
Description
Dominance behavior can regulate a division of labor in a group, such as that between reproductive and non-reproductive individuals. Manipulations of insect societies in a controlled environment can reveal how dominance behavior is regulated. Here, I examined how morphological caste, fecundity, group size, and age influence the expression of

Dominance behavior can regulate a division of labor in a group, such as that between reproductive and non-reproductive individuals. Manipulations of insect societies in a controlled environment can reveal how dominance behavior is regulated. Here, I examined how morphological caste, fecundity, group size, and age influence the expression of dominance behavior using the ponerine ant Harpegnathos saltator. All H. saltator females have the ability to reproduce. Only those with a queen morphology that enables dispersal, however, show putative sex pheromones. In contrast, those with a worker morphology normally express dominance behavior. To evaluate how worker-like dominance behavior and associated traits could be expressed in queens, I removed the wings from alate gynes, those with a queen morphology who had not yet mated or left the nest, making them dealate. Compared to gynes with attached wings, dealates frequently performed dominance behavior. In addition, only the dealates demonstrated worker-like ovarian activity in the presence of reproductive individuals, whereas gynes with wings produced sex pheromones exclusively. Therefore, the attachment of wings determines a gyne’s expression of worker-like dominance behavior and physiology. When the queen dies, workers establish a reproductive hierarchy among themselves by performing a combination of dominance behaviors. To understand how reproductive status depends on these interactions as well as a worker’s age, I measured the frequency of dominance behaviors in groups of different size composed of young and old workers. The number of workers who expressed dominance scaled with the size of the group, but younger ones were more likely to express dominance behavior and eventually become reproductive. Therefore, the predisposition of age integrates with a self-organized process to form this reproductive hierarchy. A social insect’s fecundity and fertility signal depends on social context because fecundity increases with colony size. To evaluate how a socially dependent signal regulates dominance behavior, I manipulated a reproductive worker’s social context. Reproductive workers with reduced fecundity and a less prominent fertility signal expressed more dominance behavior than those with a stronger fertility signal and higher fecundity. Therefore, dominance behavior reinforces rank to compensate for a weak signal, indicating how social context can feed back to influence the maintenance of dominance. Mechanisms that regulate H. saltator’s reproductive hierarchy can inform how the reproductive division of labor is regulated in other groups of animals.
ContributorsPyenson, Benjamin (Author) / Liebig, Jürgen (Thesis advisor) / Hölldobler, Bert (Committee member) / Fewell, Jennifer (Committee member) / Pratt, Stephen (Committee member) / Kang, Yun (Committee member) / Arizona State University (Publisher)
Created2022
Description
Wound healing is a complex tissue response that requires a coordinated interplay of multiple cells in orchestrated biological processes to restore the skin's barrier function post-injury. Proteolytic enzymes, in particular matrix metalloproteinases (MMPs), contribute to all phases of the healing process by regulating immune cell influx, clearing out the extracellular

Wound healing is a complex tissue response that requires a coordinated interplay of multiple cells in orchestrated biological processes to restore the skin's barrier function post-injury. Proteolytic enzymes, in particular matrix metalloproteinases (MMPs), contribute to all phases of the healing process by regulating immune cell influx, clearing out the extracellular matrix (ECM), and remodeling scar tissue. As a result of these various functions in the healing of skin wounds, uncontrolled activities of MMPs are associated with impaired wound healing. The MMP gene family consists of a highly conserved set of genes. Deleterious mutations in MMP genes cause developmental phenotypes that affect the heart, skeleton, and immune system response. The availability of contiguous draft genomes of non-model organisms enables the study of gene families through analysis of synteny and sequence identity. My project is aimed at conducting a comparative genomic analysis of the MMP gene family from the genomes of 29 tetrapod species—with an emphasis on reptiles. Results regarding the similarities and differences among MMP protein sequences can be further investigated to shed light on the causes which give rise to various adaptive mutations for specific species groups.
ContributorsYu, Alexander (Author) / Kusumi, Kenro (Thesis director) / Dolby, Greer (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2022-12
184109-Thumbnail Image.png
Description

Heat shock factors (HSFs) are transcriptional regulators that play a crucial role in the cellular response to environmental stress, particularly heat stress. Understanding the evolution of HSFs can provide insights into the adaptation of organisms to their changing environments. This project explored the evolution of HSFs within tetrapods, a grou

Heat shock factors (HSFs) are transcriptional regulators that play a crucial role in the cellular response to environmental stress, particularly heat stress. Understanding the evolution of HSFs can provide insights into the adaptation of organisms to their changing environments. This project explored the evolution of HSFs within tetrapods, a group of animals that includes amphibians, reptiles, turtles, and mammals. Through an analysis of the available genomic data and subsequent genomic methodologies, HSFs have undergone significant changes throughout tetrapod evolution, as evidenced by loss events observed in protein sequences of the species under examination. Moreover, several conserved and divergent regions within HSF proteins were identified, which may reflect functional differences between HSFs in different tetrapod lineages. Our findings suggest that the evolution of HSFs has contributed to the adaptation of tetrapods to their diverse environments and that further research on the functional and regulatory differences between HSFs may provide a better understanding of how organisms cope with stress in heat-stressed environments.

ContributorsSharma, Yash (Author) / Kusumi, Kenro (Thesis director) / Benson, Derek (Committee member) / Dolby, Greer (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2023-05
187668-Thumbnail Image.png
Description

Structural Equation Modeling (SEM) is a multivariate analysis methodology that could potentially be utilized to examine the barrier effect that river systems have on genetic differentiation. In this project, river systems are split into the variables of Daily Average Discharge, Average River Width, and Seasonality measurements and regressed onto the

Structural Equation Modeling (SEM) is a multivariate analysis methodology that could potentially be utilized to examine the barrier effect that river systems have on genetic differentiation. In this project, river systems are split into the variables of Daily Average Discharge, Average River Width, and Seasonality measurements and regressed onto the genetic differentiation, measured as Fst. This data was collected from the USGS database (U.S. Geological Survey, 2020), sequencing files from differing literature, or Google Earth measurements. Different Structural Equation Modeling models are used to model different system structures as well as compare it to more traditional methodologies like Generalized Linear Modeling and Generalized Linear Mixed Modeling. Ultimately results were limited by the small sample size, however, interesting patterns still emerged from the models. The SE models indicate that Discharge plays a primary role in the genetic differentiation of adjacent river populations. In addition to this, the results demonstrate how quantification of indirect effects, particularly those relating to discharge, give more informative interpretations than traditional multivariate statistics alone. These findings prompt further investigations into this potential methodology.

ContributorsMaag, Garett (Author) / Dolby, Greer A. (Thesis advisor) / Kusumi, Kenro (Thesis advisor) / Stokes, Maya F. (Committee member) / Barly, Anthony (Committee member) / Arizona State University (Publisher)
Created2023
154806-Thumbnail Image.png
Description
The most abundantly studied societies, with the exception of humans, are those of the eusocial insects, which include all ants. Eusocial insect societies are typically composed of many dozens to millions of individuals, referred to as nestmates, which require some form of communication to maintain colony cohesion and coordinate the

The most abundantly studied societies, with the exception of humans, are those of the eusocial insects, which include all ants. Eusocial insect societies are typically composed of many dozens to millions of individuals, referred to as nestmates, which require some form of communication to maintain colony cohesion and coordinate the activities within them. Nestmate recognition is the process of distinguishing between nestmates and non-nestmates, and embodies the first line of defense for social insect colonies. In ants, nestmate recognition is widely thought to occur through olfactory cues found on the exterior surfaces of individuals. These cues, called cuticular hydrocarbons (CHCs), comprise the overwhelming majority of ant nestmate profiles and help maintain colony identity. In this dissertation, I investigate how nestmate recognition is influenced by evolutionary, ontogenetic, and environmental factors. First, I contributed to the sequencing and description of three ant genomes including the red harvester ant, Pogonomyrmex barbatus, presented in detail here. Next, I studied how variation in nestmate cues may be shaped through evolution by comparatively studying a family of genes involved in fatty acid and hydrocarbon biosynthesis, i.e., the acyl-CoA desaturases, across seven ant species in comparison with other social and solitary insects. Then, I tested how genetic, developmental, and social factors influence CHC profile variation in P. barbatus, through a three-part study. (1) I conducted a descriptive, correlative study of desaturase gene expression and CHC variation in P. barbatus workers and queens; (2) I explored how larger-scale genetic variation in the P. barbatus species complex influences CHC variation across two genetically isolated lineages (J1/J2 genetic caste determining lineages); and (3) I experimentally examined how CHC development is influenced by an individual’s social environment. In the final part of my work, I resolved discrepancies between previous findings of nestmate recognition behavior in P. barbatus by studying how factors of territorial experience, i.e., spatiotemporal relationships, affect aggressive behaviors among red harvester ant colonies. Through this research, I was able to identify promising methodological approaches and candidate genes, which both broadens our understanding of P. barbatus nestmate recognition systems and supports future functional genetic studies of CHCs in ants.
ContributorsCash, Elizabeth I (Author) / Gadau, Jürgen (Thesis advisor) / Liebig, Jürgen (Thesis advisor) / Fewell, Jennifer (Committee member) / Hölldobler, Berthold (Committee member) / Kusumi, Kenro (Committee member) / Arizona State University (Publisher)
Created2016
153977-Thumbnail Image.png
Description
Rapid advancements in genomic technologies have increased our understanding of rare human disease. Generation of multiple types of biological data including genetic variation from genome or exome, expression from transcriptome, methylation patterns from epigenome, protein complexity from proteome and metabolite information from metabolome is feasible. "Omics" tools provide comprehensive view

Rapid advancements in genomic technologies have increased our understanding of rare human disease. Generation of multiple types of biological data including genetic variation from genome or exome, expression from transcriptome, methylation patterns from epigenome, protein complexity from proteome and metabolite information from metabolome is feasible. "Omics" tools provide comprehensive view into biological mechanisms that impact disease trait and risk. In spite of available data types and ability to collect them simultaneously from patients, researchers still rely on their independent analysis. Combining information from multiple biological data can reduce missing information, increase confidence in single data findings, and provide a more complete view of genotype-phenotype correlations. Although rare disease genetics has been greatly improved by exome sequencing, a substantial portion of clinical patients remain undiagnosed. Multiple frameworks for integrative analysis of genomic and transcriptomic data are presented with focus on identifying functional genetic variations in patients with undiagnosed, rare childhood conditions. Direct quantitation of X inactivation ratio was developed from genomic and transcriptomic data using allele specific expression and segregation analysis to determine magnitude and inheritance mode of X inactivation. This approach was applied in two families revealing non-random X inactivation in female patients. Expression based analysis of X inactivation showed high correlation with standard clinical assay. These findings improved understanding of molecular mechanisms underlying X-linked disorders. In addition multivariate outlier analysis of gene and exon level data from RNA-seq using Mahalanobis distance, and its integration of distance scores with genomic data found genotype-phenotype correlations in variant prioritization process in 25 families. Mahalanobis distance scores revealed variants with large transcriptional impact in patients. In this dataset, frameshift variants were more likely result in outlier expression signatures than other types of functional variants. Integration of outlier estimates with genetic variants corroborated previously identified, presumed causal variants and highlighted new candidate in previously un-diagnosed case. Integrative genomic approaches in easily attainable tissue will facilitate the search for biomarkers that impact disease trait, uncover pharmacogenomics targets, provide novel insight into molecular underpinnings of un-characterized conditions, and help improve analytical approaches that use large datasets.
ContributorsSzelinger, Szabolcs (Author) / Craig, David W. (Thesis advisor) / Kusumi, Kenro (Thesis advisor) / Narayan, Vinodh (Committee member) / Rosenberg, Michael S. (Committee member) / Huentelman, Matthew J (Committee member) / Arizona State University (Publisher)
Created2015