Matching Items (2)
Filtering by

Clear all filters

152575-Thumbnail Image.png
Description
Baruch de Spinoza (1632-1677) is most often treated as a secular philosopher in the literature. But the critical-historical and textual analyses explored in this study suggest that Spinoza wrote the Ethics not as a secular project intended to supersede monotheism for those stoic enough to plumb its icy depths, but

Baruch de Spinoza (1632-1677) is most often treated as a secular philosopher in the literature. But the critical-historical and textual analyses explored in this study suggest that Spinoza wrote the Ethics not as a secular project intended to supersede monotheism for those stoic enough to plumb its icy depths, but rather, and as is much less often assumed, as a genuinely Judeo-Christian theological discourse accounting for the changing scientific worldviews and political realities of his time. This paper draws upon scholarship documenting Spinoza's involvement with Christian sects such as the Collegiants and Quakers. After establishing the largely unappreciated importance of Spinoza's religious or theological thought, a close reading of the Ethics demonstrates that friendship is the theme that ties together Spinoza's ethical, theological, political, and scientific doctrines.
ContributorsBelcheff, David (Author) / Samuelson, Norbert (Thesis advisor) / Clay, Eugene (Thesis advisor) / Foley, Peter (Committee member) / Arizona State University (Publisher)
Created2014
Description

Agassiz’s desert tortoise (Gopherus agassizii) is a long-lived species native to the Mojave Desert and is listed as threatened under the US Endangered Species Act. To aid conservation efforts for preserving the genetic diversity of this species, we generated a whole genome reference sequence with an annotation based on dee

Agassiz’s desert tortoise (Gopherus agassizii) is a long-lived species native to the Mojave Desert and is listed as threatened under the US Endangered Species Act. To aid conservation efforts for preserving the genetic diversity of this species, we generated a whole genome reference sequence with an annotation based on deep transcriptome sequences of adult skeletal muscle, lung, brain, and blood. The draft genome assembly for G. agassizii has a scaffold N50 length of 252 kbp and a total length of 2.4 Gbp. Genome annotation reveals 20,172 protein-coding genes in the G. agassizii assembly, and that gene structure is more similar to chicken than other turtles. We provide a series of comparative analyses demonstrating (1) that turtles are among the slowest-evolving genome-enabled reptiles, (2) amino acid changes in genes controlling desert tortoise traits such as shell development, longevity and osmoregulation, and (3) fixed variants across the Gopherus species complex in genes related to desert adaptations, including circadian rhythm and innate immune response. This G. agassizii genome reference and annotation is the first such resource for any tortoise, and will serve as a foundation for future analysis of the genetic basis of adaptations to the desert environment, allow for investigation into genomic factors affecting tortoise health, disease and longevity, and serve as a valuable resource for additional studies in this species complex.

Data Availability: All genomic and transcriptomic sequence files are available from the NIH-NCBI BioProject database (accession numbers PRJNA352725, PRJNA352726, and PRJNA281763). All genome assembly, transcriptome assembly, predicted protein, transcript, genome annotation, repeatmasker, phylogenetic trees, .vcf and GO enrichment files are available on Harvard Dataverse (doi:10.7910/DVN/EH2S9K).

ContributorsTollis, Marc (Author) / DeNardo, Dale F (Author) / Cornelius, John A (Author) / Dolby, Greer A (Author) / Edwards, Taylor (Author) / Henen, Brian T. (Author) / Karl, Alice E. (Author) / Murphy, Robert W. (Author) / Kusumi, Kenro (Author)
Created2017-05-31