Matching Items (3)
Filtering by

Clear all filters

171531-Thumbnail Image.png
Description
The reality of smart cities is here and now. The issues of data privacy in tech applications are apparent in smart cities. Privacy as an issue raised by many and addressed by few remains critical for smart cities’ success. It is the common responsibility of smart cities, tech application makers,

The reality of smart cities is here and now. The issues of data privacy in tech applications are apparent in smart cities. Privacy as an issue raised by many and addressed by few remains critical for smart cities’ success. It is the common responsibility of smart cities, tech application makers, and users to embark on the journey to solutions. Privacy is an individual problem that smart cities need to provide a collective solution for. The research focuses on understanding users’ data privacy preferences, what information they consider private, and what they need to protect. The research identifies the data security loopholes, data privacy roadblocks, and common opportunities for change to implement a proactive privacy-driven tech solution necessary to address and resolve tech-induced data privacy concerns among citizens. This dissertation aims at addressing the issue of data privacy in tech applications based on known methodologies to address the concerns they allow. Through this research, a data privacy survey on tech applications was conducted, and the results reveal users’ desires to become a part of the solution by becoming aware and taking control of their data privacy while using tech applications. So, this dissertation gives an overview of the data privacy issues in tech, discusses available data privacy basis, elaborates on the different steps needed to create a robust remedy to data privacy concerns in enabling users’ awareness and control, and proposes two privacy applications one as a data privacy awareness solution and the other as a representation of the privacy control framework to address data privacy concerns in smart cities.
ContributorsMusafiri Mimo, Edgard (Author) / McDaniel, Troy (Thesis advisor) / Michael, Katina (Committee member) / Sullivan, Kenneth (Committee member) / Arizona State University (Publisher)
Created2022
156281-Thumbnail Image.png
Description
Currently, one of the biggest limiting factors for long-term deployment of autonomous systems is the power constraints of a platform. In particular, for aerial robots such as unmanned aerial vehicles (UAVs), the energy resource is the main driver of mission planning and operation definitions, as everything revolved around flight time.

Currently, one of the biggest limiting factors for long-term deployment of autonomous systems is the power constraints of a platform. In particular, for aerial robots such as unmanned aerial vehicles (UAVs), the energy resource is the main driver of mission planning and operation definitions, as everything revolved around flight time. The focus of this work is to develop a new method of energy storage and charging for autonomous UAV systems, for use during long-term deployments in a constrained environment. We developed a charging solution that allows pre-equipped UAV system to land on top of designated charging pads and rapidly replenish their battery reserves, using a contact charging point. This system is designed to work with all types of rechargeable batteries, focusing on Lithium Polymer (LiPo) packs, that incorporate a battery management system for increased reliability. The project also explores optimization methods for fleets of UAV systems, to increase charging efficiency and extend battery lifespans. Each component of this project was first designed and tested in computer simulation. Following positive feedback and results, prototypes for each part of this system were developed and rigorously tested. Results show that the contact charging method is able to charge LiPo batteries at a 1-C rate, which is the industry standard rate, maintaining the same safety and efficiency standards as modern day direct connection chargers. Control software for these base stations was also created, to be integrated with a fleet management system, and optimizes UAV charge levels and distribution to extend LiPo battery lifetimes while still meeting expected mission demand. Each component of this project (hardware/software) was designed for manufacturing and implementation using industry standard tools, making it ideal for large-scale implementations. This system has been successfully tested with a fleet of UAV systems at Arizona State University, and is currently being integrated into an Arizona smart city environment for deployment.
ContributorsMian, Sami (Author) / Panchanathan, Sethuraman (Thesis advisor) / Berman, Spring (Committee member) / Yang, Yezhou (Committee member) / McDaniel, Troy (Committee member) / Arizona State University (Publisher)
Created2018
Description

Shade plays an important role in designing pedestrian-friendly outdoor spaces in hot desert cities. This study investigates the impact of photovoltaic canopy shade and tree shade on thermal comfort through meteorological observations and field surveys at a pedestrian mall on Arizona State University's Tempe campus. During the course of 1

Shade plays an important role in designing pedestrian-friendly outdoor spaces in hot desert cities. This study investigates the impact of photovoltaic canopy shade and tree shade on thermal comfort through meteorological observations and field surveys at a pedestrian mall on Arizona State University's Tempe campus. During the course of 1 year, on selected clear calm days representative of each season, we conducted hourly meteorological transects from 7:00 a.m. to 6:00 p.m. and surveyed 1284 people about their thermal perception, comfort, and preferences. Shade lowered thermal sensation votes by approximately 1 point on a semantic differential 9-point scale, increasing thermal comfort in all seasons except winter. Shade type (tree or solar canopy) did not significantly impact perceived comfort, suggesting that artificial and natural shades are equally efficient in hot dry climates. Globe temperature explained 51 % of the variance in thermal sensation votes and was the only statistically significant meteorological predictor. Important non-meteorological factors included adaptation, thermal comfort vote, thermal preference, gender, season, and time of day. A regression of subjective thermal sensation on physiological equivalent temperature yielded a neutral temperature of 28.6 °C. The acceptable comfort range was 19.1 °C-38.1 °C with a preferred temperature of 20.8 °C. Respondents exposed to above neutral temperature felt more comfortable if they had been in air-conditioning 5 min prior to the survey, indicating a lagged response to outdoor conditions. Our study highlights the importance of active solar access management in hot urban areas to reduce thermal stress.

ContributorsMiddel, Ariane (Author) / Selover, Nancy (Author) / Hagen, Bjorn (Author) / Chhetri, Nalini (Author)
Created2015-04-13