Matching Items (2)
Filtering by

Clear all filters

Description
Driver distraction research has a long history spanning nearly 50 years, intensifying in the last decade. The focus has always been on identifying the distractive tasks and measuring the respective harm level. As in-vehicle technology advances, the list of distractive activities grows along with crash risk. Additionally, the distractive activities

Driver distraction research has a long history spanning nearly 50 years, intensifying in the last decade. The focus has always been on identifying the distractive tasks and measuring the respective harm level. As in-vehicle technology advances, the list of distractive activities grows along with crash risk. Additionally, the distractive activities become more common and complicated, especially with regard to In-Car Interactive System. This work's main focus is on driver distraction caused by the in-car interactive System. There have been many User Interaction Designs (Buttons, Speech, Visual) for Human-Car communication, in the past and currently present. And, all related studies suggest that driver distraction level is still high and there is a need for a better design. Multimodal Interaction is a design approach, which relies on using multiple modes for humans to interact with the car & hence reducing driver distraction by allowing the driver to choose the most suitable mode with minimum distraction. Additionally, combining multiple modes simultaneously provides more natural interaction, which could lead to less distraction. The main goal of MMI is to enable the driver to be more attentive to driving tasks and spend less time fiddling with distractive tasks. Engineering based method is used to measure driver distraction. This method uses metrics like Reaction time, Acceleration, Lane Departure obtained from test cases.
ContributorsJahagirdar, Tanvi (Author) / Gaffar, Ashraf (Thesis advisor) / Ghazarian, Arbi (Committee member) / Gray, Robert (Committee member) / Arizona State University (Publisher)
Created2015
154625-Thumbnail Image.png
Description
This reports investigates the general day to day problems faced by small businesses, particularly small vendors, in areas of marketing and general management. Due to lack of man power, internet availability and properly documented data, small business cannot optimize their business. The aim of the research is to address and

This reports investigates the general day to day problems faced by small businesses, particularly small vendors, in areas of marketing and general management. Due to lack of man power, internet availability and properly documented data, small business cannot optimize their business. The aim of the research is to address and find a solution to these problems faced, in the form of a tool which utilizes data science. The tool will have features which will aid the vendor to mine their data which they record themselves and find useful information which will benefit their businesses. Since there is lack of properly documented data, One Class Classification using Support Vector Machine (SVM) is used to build a classifying model that can return positive values for audience that is likely to respond to a marketing strategy. Market basket analysis is used to choose products from the inventory in a way that patterns are found amongst them and therefore there is a higher chance of a marketing strategy to attract audience. Also, higher selling products can be used to the vendors' advantage and lesser selling products can be paired with them to have an overall profit to the business. The tool, as envisioned, meets all the requirements that it was set out to have and can be used as a stand alone application to bring the power of data mining into the hands of a small vendor.
ContributorsSharma, Aveesha (Author) / Ghazarian, Arbi (Thesis advisor) / Gaffar, Ashraf (Committee member) / Bansal, Srividya (Committee member) / Arizona State University (Publisher)
Created2016