Matching Items (7)
Filtering by

Clear all filters

148045-Thumbnail Image.png
Description

As part of Arizona State University’s net-zero carbon initiative, 1000 mesquite trees were planted on a vacant plot of land at West Campus to sequester carbon from the atmosphere. Urban forestry is typically a method of carbon capture in temperate areas, but it is hypothesized that the same principle can

As part of Arizona State University’s net-zero carbon initiative, 1000 mesquite trees were planted on a vacant plot of land at West Campus to sequester carbon from the atmosphere. Urban forestry is typically a method of carbon capture in temperate areas, but it is hypothesized that the same principle can be employed in arid regions as well. To test this hypothesis a carbon model was constructed using the pools and fluxes measured at the Carbon sink and learning forest at West Campus. As an ideal, another carbon model was constructed for the mature mesquite forest at the Hassayampa River Preserve to project how the carbon cycle at West Campus could change over time as the forest matures. The results indicate that the West Campus plot currently functions as a carbon source while the site at the Hassayampa river preserve currently functions as a carbon sink. Soil composition at both sites differ with inorganic carbon contributing to the largest percentage at West Campus, and organic carbon at Hassayampa. Predictive modeling using biomass accumulation estimates and photosynthesis rates for the Carbon Sink Forest at West Campus both predict approximately 290 metric tons of carbon sequestration after 30 years. Modeling net ecosystem exchange predicts that the West Campus plot will begin to act as a carbon sink after 33 years.

ContributorsLiddle, David Mohacsy (Author) / Ball, Becky (Thesis director) / Nishimura, Joel (Committee member) / School of Life Sciences (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147908-Thumbnail Image.png
Description

The Philippines relies on a vast biodiversity of fishes as a staple food, but like many countries around the globe, experiences severe “leakages” of contaminants and pollutants in the environment. In order to better understand the relationship between environmental pollutants and public health, this research project measured the concentration of

The Philippines relies on a vast biodiversity of fishes as a staple food, but like many countries around the globe, experiences severe “leakages” of contaminants and pollutants in the environment. In order to better understand the relationship between environmental pollutants and public health, this research project measured the concentration of pollutants in a commonly consumed local fish (Siganus fuscescens), and then evaluated the potential health risks of eating this fish based on estimated average consumer weight and consumption levels. Fish sampled from four different sites located in Negros Oriental, Philippines were analyzed for organic contaminants using gas chromatography and mass spectroscopy. Pollutants quantified included polycyclic aromatic hydrocarbons (PAHs), pesticides, phthalates, and polychlorinated biphenyl (PCBs). Across the four study sites, fishes from Manjuyod showed the highest frequency of detection of different pollutants. However, phthalates and PAHs were found in similar concentrations in all four sites, with fishes from Dumaguete showing the highest level of PCBs compared to the other sampled sites. The U.S. Environmental Protection Agency’s guide for fish contaminants pinpoints several health risks associated with the chronic ingestion of these contaminants. Based on estimated average body weights of Filipino adult men, adult women, and children, and various consumption levels, people who eat the fish at or above the national average consumption level may be at increased risk for chronic health outcomes, such as cancer and/or other adverse effects. Specifically, due to the high concentration of PCBs in Dumaguete, selected populations who eat local fish from this site may be at higher risk than the citizens who eat the fish from other sites at similar consumption rates. These results can help to inform local and national policies on water quality, waste disposal, and fish consumption advisory programs.

ContributorsMolino, Eryka J (Author) / Polidoro, Beth (Thesis director) / Bucol, Lilibeth (Committee member) / School of Life Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
131935-Thumbnail Image.png
Description
Terrestrial crude oil spills compromise a soil’s ability to provide ecosystem services by inhibiting plant life and threatening groundwater integrity. Ozone gas, a powerful oxidant, shows promise to aid in soil recovery by degrading petroleum hydrocarbons into more bioavailable and biodegradable chemicals. However, previous research has shown that ozone can

Terrestrial crude oil spills compromise a soil’s ability to provide ecosystem services by inhibiting plant life and threatening groundwater integrity. Ozone gas, a powerful oxidant, shows promise to aid in soil recovery by degrading petroleum hydrocarbons into more bioavailable and biodegradable chemicals. However, previous research has shown that ozone can change the soil pH and create harmful organic compounds.
The research objective was to determine the short-term ecological toxicity of ozonation byproducts on seed germination of three distinct plant types (radish, lettuce, and grass) compared to untreated and uncontaminated soils. We hypothesize that the reduction of heavy hydrocarbon contamination in soil by ozone application will provide more suitable habitat for the germinating seeds. The effect of ozone treatment on seed germination and seedling quality was measured using ASTM standards for early seedling growth in conjunction with a gradient of potting soil amendments. Ozonation parameters were measured using established methods and include total petroleum hydrocarbons (TPH), dissolved organic carbon (DOC), and pH.
This study demonstrated the TPH levels fall up to 22% with ozonation, suggesting TPH removal is related to the amount of ozone delivered as opposed to the type of crude oil present. The DOC values increase comparably across crude oil types as the ozonation dose increases (from a background level of 0.25 g to 6.2 g/kg dry soil at the highest ozone level), suggesting that DOC production is directly related to the amount of ozone, not crude oil type. While ozonation reduced the mass of heavy hydrocarbons in the soil, it increased the amount of ozonation byproducts in the soil. For the three types of seeds used in the study, these changes in concentrations of TPH and DOC affected the species differently; however, no seed type showed improved germination after ozone treatment. Thus, ozone treatment by itself had a negative impact on germination potential.
Future research should focus on the effects of post-ozonation, long-term bioremediation on eco-toxicity. By helping define the eco-toxicity of ozonation techniques, this research can improve upon previously established ozone techniques for petroleum remediation and provide economic and environmental benefits when used for soil treatment.
ContributorsJanuszewski, Brielle (Author) / Rittmann, Bruce (Thesis director) / Yavuz, Burcu (Committee member) / Civil, Environmental and Sustainable Eng Program (Contributor) / School of International Letters and Cultures (Contributor) / School of Politics and Global Studies (Contributor, Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132536-Thumbnail Image.png
Description
Human activity produces ambient noise that potentially alters species’ abilities to communicate with each other—among other impacts. Given that birds are known to be sensitive to structural changes in habitat and highly communicative through sound, it is beneficial to understand how changing acoustic ecologies and ambient noise impact birds’

Human activity produces ambient noise that potentially alters species’ abilities to communicate with each other—among other impacts. Given that birds are known to be sensitive to structural changes in habitat and highly communicative through sound, it is beneficial to understand how changing acoustic ecologies and ambient noise impact birds’ ability to communicate in their respective environments. In this study, mockingbird calls from an urban, desert, and intermediate study site were recorded and analyzed for differences in acoustic properties. Acoustic properties such as frequency and amplitude differed significantly across sites as it was determined that mockingbirds in urban areas increase both the peak frequency and amplitude of their calls in order to communicate. This study identifies what these changes in acoustic properties mean in relation to the survival and conservation of birds and concludes with recommendations for novel research.
ContributorsReynolds, Bailey Susana (Author) / Pearson, David (Thesis director) / Walters, Molina (Committee member) / School of Sustainability (Contributor) / School of Life Sciences (Contributor) / Dean, W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
134584-Thumbnail Image.png
Description
There are two common cognitive distortions present in risky decision-making behavior. The gambler's fallacy is the notion that a random game of chance is potentially biased by previous outcomes, and the near-miss effect is the overestimation of the probability of winning immediately after barely missing a win. This study replicated

There are two common cognitive distortions present in risky decision-making behavior. The gambler's fallacy is the notion that a random game of chance is potentially biased by previous outcomes, and the near-miss effect is the overestimation of the probability of winning immediately after barely missing a win. This study replicated a portion of the methods of Clark et al. (2014) in an attempt to support the presence of these two fallacies in online simulated risky decision-making tasks. One hundred individuals were recruited and asked to perform one of two classic gambling tasks, either predict the outcome of a dichromatic roulette wheel or spin a simplified, two-reel slot machine. An analysis of color predictions as a function of run length revealed a classic gambler's fallacy effect in the roulette wheel task. A heightened motivation to continue playing after a win, but not a near or full miss, was seen in the slot machine task. How pleased an individual was with the results of the previous round directly affected his or her interest in continuing to play in both experiments. These findings indicate that the gambler's fallacy is present in online decision-making simulations involving risk, but that the near-miss effect is not.
ContributorsCatinchi, Alexis Leigh (Author) / McClure, Samuel (Thesis director) / Glenberg, Arthur (Committee member) / Gatewood, Kira (Committee member) / School of Life Sciences (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
Description
With increasing urbanization, organisms face a myriad of novel ecological challenges. While the eco-evolutionary dynamics of urbanization are currently receiving a great deal of attention, the effect of urban disturbance on the microbiome of urban organisms is relatively unstudied. Indeed, studies of the microbiome may illuminate the mechanisms by which

With increasing urbanization, organisms face a myriad of novel ecological challenges. While the eco-evolutionary dynamics of urbanization are currently receiving a great deal of attention, the effect of urban disturbance on the microbiome of urban organisms is relatively unstudied. Indeed, studies of the microbiome may illuminate the mechanisms by which some species thrive after urbanization (pest implications), while other species go locally extinct (biodiversity implications). We investigated the gut microbiome of the Western black widow spider (Latrodectus hesperus). L. hesperus is an ideal model system as they are a pest species of medical importance in urban ecosystems, often forming dense urban infestations relative to the sparse populations found in their native Sonoran Desert. To gain insight into the composition of the microbiome in L. hesperus and its potential function, we sampled 4 urban, 4 desert, and 2 laboratory-reared spiders, and high-throughput sequencing of the 16S rRNA V4 region was used to investigate the diversity of gut microbiota. Dominant bacterial phyla across all samples were Firmicutes, Proteobacteria, and Actinobacteria. While desert widows showed more gut microbial diversity than urban widows, the difference was not statistically significant. The relative abundance of taxonomic classes Blastocatellia, Acidobacteriia, and Thermoleophilia detected in desert spiders was especially higher than those in urban and laboratory-reared spiders. However, urban spiders had a higher relative abundance of taxonomic class Actinomycetia. Differences in widow gut microbiome diversity improves our understanding of how features unique to a habitat, like prey diversity and soil microbes, may be shaping their microbiome. Additionally, this work further highlights the impact urbanization has on biodiversity loss, which indirectly develops a new biomarker for differentiating between urban and desert black widow spiders based on their gut microbiome.
ContributorsAsrari, Hasti (Author) / Johnson, Chad (Thesis director) / Sandrin, Todd (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Natural Sciences (Contributor) / School of Life Sciences (Contributor)
Created2022-12
128945-Thumbnail Image.png
Description

Summer daytime cooling efficiency of various land cover is investigated for the urban core of Phoenix, Arizona, using the Local-Scale Urban Meteorological Parameterization Scheme (LUMPS). We examined the urban energy balance for 2 summer days in 2005 to analyze the daytime cooling-water use tradeoff and the timing of sensible heat

Summer daytime cooling efficiency of various land cover is investigated for the urban core of Phoenix, Arizona, using the Local-Scale Urban Meteorological Parameterization Scheme (LUMPS). We examined the urban energy balance for 2 summer days in 2005 to analyze the daytime cooling-water use tradeoff and the timing of sensible heat reversal at night. The plausibility of the LUMPS model results was tested using remotely sensed surface temperatures from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) imagery and reference evapotranspiration values from a meteorological station. Cooling efficiency was derived from sensible and latent heat flux differences. The time when the sensible heat flux turns negative (sensible heat flux transition) was calculated from LUMPS simulated hourly fluxes. Results indicate that the time when the sensible heat flux changes direction at night is strongly influenced by the heat storage capacity of different land cover types and by the amount of vegetation. Higher heat storage delayed the transition up to 3 h in the study area, while vegetation expedited the sensible heat reversal by 2 h. Cooling efficiency index results suggest that overall, the Phoenix urban core is slightly more efficient at cooling than the desert, but efficiencies do not increase much with wet fractions higher than 20%. Industrial sites with high impervious surface cover and low wet fraction have negative cooling efficiencies. Findings indicate that drier neighborhoods with heterogeneous land uses are the most efficient landscapes in balancing cooling and water use in Phoenix. However, further factors such as energy use and human vulnerability to extreme heat have to be considered in the cooling-water use tradeoff, especially under the uncertainties of future climate change.

ContributorsMiddel, Ariane (Author) / Brazel, Anthony J. (Author) / Kaplan, Shai (Author) / Myint, Soe W. (Author)
Created2012-08-12