Matching Items (5)
Filtering by

Clear all filters

153298-Thumbnail Image.png
Description
Research in microbial biofuels has dramatically increased over the last decade. The bulk of this research has focused on increasing the production yields of cyanobacteria and algal cells and improving extraction processes. However, there has been little to no research on the potential impact of viruses on the yields of

Research in microbial biofuels has dramatically increased over the last decade. The bulk of this research has focused on increasing the production yields of cyanobacteria and algal cells and improving extraction processes. However, there has been little to no research on the potential impact of viruses on the yields of these phototrophic microbes for biofuel production. Viruses have the potential to significantly reduce microbial populations and limit their growth rates. It is therefore important to understand how viruses affect phototrophic microbes and the prevalence of these viruses in the environment. For this study, phototrophic microbes were grown in glass bioreactors, under continuous light and aeration. Detection and quantification of viruses of both environmental and laboratory microbial strains were measured through the use of a plaque assay. Plates were incubated at 25º C under continuous direct florescent light. Several environmental samples were taken from Tempe Town Lake (Tempe, AZ) and all the samples tested positive for viruses. Virus free phototrophic microbes were obtained from plaque assay plates by using a sterile loop to scoop up a virus free portion of the microbial lawn and transferred into a new bioreactor. Isolated cells were confirmed virus free through subsequent plaque assays. Viruses were detected from the bench scale bioreactors of Cyanobacteria Synechocystis PCC 6803 and the environmental samples. Viruses were consistently present through subsequent passage in fresh cultures; demonstrating viral contamination can be a chronic problem. In addition TEM was performed to examine presence or viral attachment to cyanobacterial cells and to characterize viral particles morphology. Electron micrographs obtained confirmed viral attachment and that the viruses detected were all of a similar size and shape. Particle sizes were measured to be approximately 50-60 nm. Cell reduction was observed as a decrease in optical density, with a transition from a dark green to a yellow green color for the cultures. Phototrophic microbial viruses were demonstrated to persist in the natural environment and to cause a reduction in algal populations in the bioreactors. Therefore it is likely that viruses could have a significant impact on microbial biofuel production by limiting the yields of production ponds.
ContributorsKraft, Kyle (Author) / Abbaszadegan, Morteza (Thesis advisor) / Alum, Absar (Committee member) / Fox, Peter (Committee member) / Arizona State University (Publisher)
Created2014
131521-Thumbnail Image.png
Description
Turbidity is a known problem for UV water treatment systems as suspended particles can shield contaminants from the UV radiation. UV systems that utilize a reflective radiation chamber may be able to decrease the impact of turbidity on the efficacy of the system. The purpose of this study was to

Turbidity is a known problem for UV water treatment systems as suspended particles can shield contaminants from the UV radiation. UV systems that utilize a reflective radiation chamber may be able to decrease the impact of turbidity on the efficacy of the system. The purpose of this study was to determine how kaolin clay and gram flour turbidity affects inactivation of Escherichia coli (E. coli) when using a UV system with a reflective chamber. Both sources of turbidity were shown to reduce the inactivation of E. coli with increasing concentrations. Overall, it was shown that increasing kaolin clay turbidity had a consistent effect on reducing UV inactivation across UV doses. Log inactivation was reduced by 1.48 log for the low UV dose and it was reduced by at least 1.31 log for the low UV dose. Gram flour had a similar effect to the clay at the lower UV dose, reducing log inactivation by 1.58 log. At the high UV dose, there was no change in UV inactivation with an increase in turbidity. In conclusion, turbidity has a significant impact on the efficacy of UV disinfection. Therefore, removing turbidity from water is an essential process to enhance UV efficiency for the disinfection of microbial pathogens.
ContributorsMalladi, Rohith (Author) / Abbaszadegan, Morteza (Thesis director) / Alum, Absar (Committee member) / Fox, Peter (Committee member) / School of Human Evolution & Social Change (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
136729-Thumbnail Image.png
Description
The rising need for water reuse in the Southwest United States has increased awareness of the quality of wastewater. This need is caused by an increased population having basic water needs; inefficient water use, such as overwatering lawns and leaking pipes; and recent drought conditions all over the southwestern US.

The rising need for water reuse in the Southwest United States has increased awareness of the quality of wastewater. This need is caused by an increased population having basic water needs; inefficient water use, such as overwatering lawns and leaking pipes; and recent drought conditions all over the southwestern US. Reclaimed water is a possible solution. It's used for a variety of non-potable, or non-drinkable, reasons. These uses include: cooling power plants, concrete mixing, artificial lakes, and irrigation for public parks and golf courts. Cooling power plants utilizes roughly 41% of the total water consumed by the United States, which makes it the highest user of water in the US. The attention is turned to optimizing mechanical processes and reducing the amount of water consumed. Wet-recirculating systems reuse cooling water in a second cycle rather than discharging it immediately. Cooling towers are commonly used to expose water to ambient air. As the water evaporates, more water is withdrawn while the rest continues to circulate. These systems have much lower water withdrawals than once-through systems, but have higher water consumption. The cooling towers in wet-recirculating plants and other warm machinery have two major limitations: evaporation of pumped water and scale formation in the components. Cooling towers circulate water, and only draw as it evaporates, which conserves water. The scale formation in the components is due to the hardness of the water. Scale occurs when hard water evaporates and forms solid calcium carbonate. This formation can lead to reduced flow or even clogging in pipes, fouling of components or pipes, and reduced cooling efficiency. Another concern from the public over the use of reclaimed water is the possibility of there being fecal contamination. This fear stems from the stigma associated with drinking water that essentially came from the toilet. An emerging technology, in order to address these three issues, is the use of an electromagnetic device. The wires have a current flowing through which induces a magnetic field perpendicular to the direction of the flow, while the electrical field is proportional to the flow velocity. In other words, the magnetic and electrical fields will create an effect that will concentrate cations at the center of the pipe and anions at the wall of the pipe or the other way depending on the direction of the flow. Reversing the field will then cause the cations and anions to move toward one another and increase the collision frequency and energy. The purpose of these experiments is to test the effects of the electromagnetic device on the aforementioned topics. There are three tests that were performed, a surface tension test, a hardness test, and a microbial test. The surface tension test focused on the angle of a water droplet until it burst. The angle would theoretically decrease as the bond between water molecules increased due to the device. The results of this test shows a lower angle for the treated water but a higher angle for the untreated one. This means the device had an effect on the surface tension of the water. Hard water is caused by calcium and magnesium ions in the water. These ions are dissolved in the water as it travels past soil and rocks. The purpose of this test is to measure the free calcium ion amount in the water. If the free calcium number lowers, then it can be assumed it collided with the carbonate and formed calcium carbonate. This calcium carbonate causes a reduction in hardness in the water. The result of the test showed no correlation between ion concentrations in the treated/untreated system. The e. coli test focused on testing the effects of an electromagnetic device on inhibiting fecal contamination in water/wastewater at a treatment facility. In order to detect fecal contamination, we test for bacteria known as fecal coliforms, more specifically e. coli. The test involved spiking the system with bacteria and testing its concentrations after time had passed.The e. coli results showed no trend in the inactivation of the bacteria. In conclusion, the device had varying results, but multiple steps can be taken in the future in order to continue research.
ContributorsHernandez, Andres Victor (Author) / Fox, Peter (Thesis director) / Abbaszadegan, Morteza (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2014-12
136252-Thumbnail Image.png
Description
This project aims to address the current protocol regarding the diagnosis and treatment of traumatic brain injury (TBI) in medical industries around the world. Although there are various methods used to qualitatively determine if TBI has occurred to a patient, this study attempts to aid in the creation of a

This project aims to address the current protocol regarding the diagnosis and treatment of traumatic brain injury (TBI) in medical industries around the world. Although there are various methods used to qualitatively determine if TBI has occurred to a patient, this study attempts to aid in the creation of a system for quantitative measurement of TBI and its relative magnitude. Through a method of artificial evolution/selection called phage display, an antibody that binds highly specifically to a post-TBI upregulated brain chondroitin sulfate proteoglycan called neurocan has been identified. As TG1 Escheria Coli bacteria were infected with KM13 helper phage and M13 filamentous phage in conjunction, monovalent display of antibody fragments (ScFv) was performed. The ScFv bind directly to the neurocan and from screening, phage that produced ScFv's with higher affinity and specificity to neurocan were separated and purified. Future research aims to improve the ScFv characteristics through increased screening toward neurocan. The identification of a highly specific antibody could lead to improved targeting of neurocan post-TBI in-vivo, aiding researchers in quantitatively defining TBI by visualizing its magnitude.
ContributorsSeelig, Timothy Scott (Author) / Stabenfeldt, Sarah (Thesis director) / Ankeny, Casey (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2015-05
136171-Thumbnail Image.png
Description
The diagnosis of bacterial infections based on phage multiplication has the potential for profound clinical implications, particularly for antibiotic-resistant strains and the slow-growing Mycobacterium tuberculosis. The possibility of hastening the diagnosis of antibiotic-resistant mycobacterial infections was accomplished via the study of Mycobacterium smegmatis, a generally non-pathogenic, comparatively fast growing microorganism

The diagnosis of bacterial infections based on phage multiplication has the potential for profound clinical implications, particularly for antibiotic-resistant strains and the slow-growing Mycobacterium tuberculosis. The possibility of hastening the diagnosis of antibiotic-resistant mycobacterial infections was accomplished via the study of Mycobacterium smegmatis, a generally non-pathogenic, comparatively fast growing microorganism to M. tuberculosis. These proof-of-concept studies established that after transduction of M. smegmatis cells with bacteriophages, MALDI-TOF MS could be used to detect increased amounts of phage proteins. Recording the growth of M. smegmatis over an 8-hour period, starting with very low OD600 measurements, simulated bacterial loads in clinical settings. For the purposes of MALDI-TOF MS, the procedure for the most effective lethal exposure for M. smegmatis was determined to be a 1-hour incubation in a 95°C water bath. Successful precipitation of the lytic mycobacteriophages D29 and Giles was performed using chloroform and methanol and overlaid with 1-2 μL of α-cyano-4-hydoxycinnaminic acid, which allowed for more distinct and repeatable MALDI-TOF MS spectra. Phage D29 was found to produce an m/z peak at 18.477 kDa, which may have indicated a 2+-charged ion of the 34.8 kDa minor tail protein. The Giles proteins that were identified with MALDI-TOF MS have not been directly compared to protein values reported in the scientific literature. However, the MALDI-TOF MS spectra suggested that distinct peaks existed between M. smegmatis mc2155 and mycobacteriophages, indicating that successful infection with lytic phage and replication thereafter may have occurred. The distinct peaks between M. smegmatis and the phage can be used as indicators of the presence of mycobacteria. At this point, the limits of detection of each phage must be elucidated in order for MALDI-TOF MS spectra to be successfully implemented as a mechanism to rapidly detect antibiotic-resistant mycobacteria.
ContributorsBarrett, Rachael Lauren (Author) / Haydel, Shelley (Thesis director) / Sandrin, Todd (Committee member) / Maarsingh, Jason (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05