Matching Items (4)
Filtering by

Clear all filters

131595-Thumbnail Image.png
Description
Chemoreception is an important method for an octopus to sense and react to its surroundings. However, the density of chemoreceptors within different areas of the skin of the octopus arm is poorly documented. In order to assess the relative sensitivity of various regions and the degree to which chemoreception is

Chemoreception is an important method for an octopus to sense and react to its surroundings. However, the density of chemoreceptors within different areas of the skin of the octopus arm is poorly documented. In order to assess the relative sensitivity of various regions and the degree to which chemoreception is locally controlled, octopus arms were amputated and exposed to acetic acid, a noxious chemical stimulus that has previously been shown to elicit movement responses in amputated arms (Hague et al., 2013). To test this, 11 wild-caught Octopus bimaculoides (6 females, 5 males) were obtained. Acetic acid vapor was introduced in the distal oral, distal aboral, proximal oral, and proximal aboral regions of amputated arms. The frequency of the occurrence of movement was first analyzed. For those trials in which movement occurred, the latency (delay between the stimulus and the onset of movement) and the duration of movement were analyzed. The distal aboral and distal oral regions were both more likely to move than either the proximal oral or proximal aboral regions (p < 0.0001), and when they did move, were more likely to move for longer periods of time (p < 0.05). In addition, the proximal oral region was more likely to exhibit a delay in the onset of movement compared to the distal oral or distal aboral regions (p < 0.0001). These findings provide evidence that the distal arm is most sensitive to noxious chemical stimuli. However, there were no significant differences between the distal oral and distal aboral regions, or between the proximal oral and proximal aboral regions. This suggests that there may not be a significant difference in the density of chemoreceptors in the aboral versus oral regions of the arm, contrary to claims in the literature. The other independent variables analyzed, including sex, body mass, arm length, anterior versus posterior arm identity, and left versus right arm identity, did not have a significant effect on any of the three dependent variables analyzed. Further analysis of the relative density of chemoreceptors in different regions of the octopus arm is merited.
ContributorsCasleton, Rachel Marie (Author) / Fisher, Rebecca (Thesis director) / Marvi, Hamidreza (Committee member) / Gire, David (Committee member) / School of International Letters and Cultures (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132790-Thumbnail Image.png
Description
Research indicates that social changes have resulted in children exercising much less than in the past. This is problematic since physical activity throughout the elementary school day is imperative, because exercise improves academic focus, boosts mood, and leads to a healthier lifestyle. Exercising is pivotal for all students but even

Research indicates that social changes have resulted in children exercising much less than in the past. This is problematic since physical activity throughout the elementary school day is imperative, because exercise improves academic focus, boosts mood, and leads to a healthier lifestyle. Exercising is pivotal for all students but even more so for students in the Special Education classroom who may rely on physical activity as a way of regulating their emotions. Depending on the school, students may only exercise at recess and during their Physical Education electives. Lack of physical activity can be detrimental to the academic and physical success of a student.
This thesis explores the impact of physical activity--what I have chosen to call “moments of movement” -- inside the classroom throughout the elementary school day. Journal-based observations were made by a student teacher placed in a special education 4th-6th grade writing and reading resource classroom from August-December of 2018 and a fourth grade general education classroom from January-May of 2019. All observations were made at Adams Elementary School, a Title 1 school, in the Mesa, Arizona school district. At this K-6 grade school, many students live with the challenges of poverty, neglect, unstable family dynamics, and trauma. Because the teachers work tirelessly to cultivate a sense of home for the students, there is a strong emphasis on non-traditional teaching methods, including the AVID program and the Kagan, and Tribes strategies.
Ms. Norris (the special education teacher) and Ms. Foss (the fourth grade teacher) both have strong backgrounds in fitness and naturally incorporate physical activity in their classrooms, which is not something typically found at elementary schools. In this paper, physical activity strategies in classrooms of Ms. Norris and Ms. Foss are analyzed, as well as the benefits of implementing these strategies. The impact of these “moments of movement” on the whole class and individual students is discussed, and suggestions are made to help educators incorporate “moments of movement” into their own classrooms. Educators can use the strategies present at Adams Elementary School as a model for incorporating exercise in their own classrooms.
ContributorsRudolph, Natalie S (Author) / Meloy, Elizabeth (Thesis director) / Norris, Angela (Committee member) / Division of Teacher Preparation (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
162248-Thumbnail Image.png
Description

Drylands cover almost half of the land surface on Earth, yet there is still little understood of the processes in these ecosystems. This project studied the impact of macroclimate (precipitation and temperature in large regions) in comparison to microclimate (the climate under canopy versus in the open) to learn more

Drylands cover almost half of the land surface on Earth, yet there is still little understood of the processes in these ecosystems. This project studied the impact of macroclimate (precipitation and temperature in large regions) in comparison to microclimate (the climate under canopy versus in the open) to learn more about the drivers of litter decomposition in drylands.

ContributorsMcGroarty, Megan (Author) / Throop, Heather (Thesis director) / Trembath-Reichert, Elizabeth (Committee member) / Reed, Sasha (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / School of Earth and Space Exploration (Contributor) / School of Sustainability (Contributor)
Created2021-12
Description

Agassiz’s desert tortoise (Gopherus agassizii) is a long-lived species native to the Mojave Desert and is listed as threatened under the US Endangered Species Act. To aid conservation efforts for preserving the genetic diversity of this species, we generated a whole genome reference sequence with an annotation based on dee

Agassiz’s desert tortoise (Gopherus agassizii) is a long-lived species native to the Mojave Desert and is listed as threatened under the US Endangered Species Act. To aid conservation efforts for preserving the genetic diversity of this species, we generated a whole genome reference sequence with an annotation based on deep transcriptome sequences of adult skeletal muscle, lung, brain, and blood. The draft genome assembly for G. agassizii has a scaffold N50 length of 252 kbp and a total length of 2.4 Gbp. Genome annotation reveals 20,172 protein-coding genes in the G. agassizii assembly, and that gene structure is more similar to chicken than other turtles. We provide a series of comparative analyses demonstrating (1) that turtles are among the slowest-evolving genome-enabled reptiles, (2) amino acid changes in genes controlling desert tortoise traits such as shell development, longevity and osmoregulation, and (3) fixed variants across the Gopherus species complex in genes related to desert adaptations, including circadian rhythm and innate immune response. This G. agassizii genome reference and annotation is the first such resource for any tortoise, and will serve as a foundation for future analysis of the genetic basis of adaptations to the desert environment, allow for investigation into genomic factors affecting tortoise health, disease and longevity, and serve as a valuable resource for additional studies in this species complex.

Data Availability: All genomic and transcriptomic sequence files are available from the NIH-NCBI BioProject database (accession numbers PRJNA352725, PRJNA352726, and PRJNA281763). All genome assembly, transcriptome assembly, predicted protein, transcript, genome annotation, repeatmasker, phylogenetic trees, .vcf and GO enrichment files are available on Harvard Dataverse (doi:10.7910/DVN/EH2S9K).

ContributorsTollis, Marc (Author) / DeNardo, Dale F (Author) / Cornelius, John A (Author) / Dolby, Greer A (Author) / Edwards, Taylor (Author) / Henen, Brian T. (Author) / Karl, Alice E. (Author) / Murphy, Robert W. (Author) / Kusumi, Kenro (Author)
Created2017-05-31