Matching Items (2)
Filtering by

Clear all filters

161313-Thumbnail Image.png
Description
The food-energy-water (FEW) nexus refers to the interactions, trade-offs, and relationships between the three resources and their related governance sectors. Given the significant interdependencies, decisions made in one sector can affect the other two; thus, integrated governance can reduce unintended consequences and lead towards increased resource security and sustainability. Despite

The food-energy-water (FEW) nexus refers to the interactions, trade-offs, and relationships between the three resources and their related governance sectors. Given the significant interdependencies, decisions made in one sector can affect the other two; thus, integrated governance can reduce unintended consequences and lead towards increased resource security and sustainability. Despite the known benefits, many governance decisions continue to be made in “silos,” where stakeholders do not coordinate across sectoral boundaries. Scholars have begun to identify barriers to the implementation of integrated FEW nexus governance, yet there is still minimal understanding of the reasons why these barriers exist and no theoretical framework for evaluating or assessing FEW nexus governance. Integrating the theory of collaborative governance with the concept of the FEW nexus provides an opportunity to better understand the barriers to and structures of FEW nexus governance and to propose solutions for increased collaborative FEW nexus governance in practice. To investigate this governance system, I examined the collaborative governance of the FEW nexus in the context of extreme urban water challenges in two urban case cities: Phoenix, Arizona, USA and Cape Town, South Africa. First, I performed a media analysis of the 2018 Cape Town water crisis to understand the impact of the water crisis on the FEW nexus resource system and the collaborative governance employed to respond to that crisis. Second, I conducted a systematic case study of FEW nexus governance in Phoenix, Arizona to understand barriers to collaborative governance implementation in the system and to identify opportunities to overcome these barriers. Finally, I presented a framework of indicators to assess the collaborative governance of the local FEW nexus. This dissertation will advance the sustainability literature by moving the concept of FEW nexus governance from theory and conceptualization towards operationalization and measurement.
ContributorsJones, Jaime Leah (Author) / White, Dave D (Thesis advisor) / Melnick, Rob (Committee member) / Aggarwal, Rimjhim (Committee member) / Arizona State University (Publisher)
Created2021
Description

These videos depict two miscible liquids with different densities and viscosities coming into contact. This study explores how a swellable test pad can be deployed for measuring urea in saliva by partially prefilling the pad with a miscible solution of greater viscosity and density. The resultant Korteweg stresses and viscous

These videos depict two miscible liquids with different densities and viscosities coming into contact. This study explores how a swellable test pad can be deployed for measuring urea in saliva by partially prefilling the pad with a miscible solution of greater viscosity and density. The resultant Korteweg stresses and viscous fingering patterns are analyzed using solutions with added food color through video analysis and image processing. Image analysis is simplified using the saturation channel after converting RGB image sequences to HSB. These videos are conjunction to an article submission to MDPI Bioengineering journal as supplementary files to enhance the breadth and depth of the content therein.

ContributorsClingan, H. (Author) / Rusk, D. (Author) / Smith, K. (Author) / Garcia, A. (Author)
Created2018-03-15