Matching Items (6)
132076-Thumbnail Image.png
Description
Following the prolific car-centric design of the twentieth century, many cities are grappling with increasing pedestrian deaths and greater vehicle congestion. To solve these problems, many of these cities are expressing a desire to create more effective and vibrant walkable places. Aside from safety, numerous benefits come from pedestrian friendly

Following the prolific car-centric design of the twentieth century, many cities are grappling with increasing pedestrian deaths and greater vehicle congestion. To solve these problems, many of these cities are expressing a desire to create more effective and vibrant walkable places. Aside from safety, numerous benefits come from pedestrian friendly communities, including greater economic activity, better health, greater social capital, and less environmental impact. Although there are several tools already available, evaluating an area’s current walkability situation is still varied, and evaluating a pedestrian’s thoughts on safety and enjoyability is also difficult. The benefits of walkability and past and present tools are summarized in this paper. The goal of this paper was to create a walkability evaluation tool that included smaller, often overlooked aspects of the sidewalk and site design that contribute to a pedestrian’s experience and safety. The author developed a tool containing 40 different measures of the sidewalk concerning safety, connectivity, enjoyment, and accessibility, as well as created methods for visualizing the data. The tool was then utilized to gather data at six Phoenix-metro area intersections using a combination of on street data collection and GIS software and Google Street View. The paper also details suggestions on how to act upon the data and improve walkability in an area, including minor street alterations and larger policy shifts in zoning codes. Although in preliminary data collection the tool provides a good snapshot of the data, further development of the tool and assessment of its reliability are needed, as well as greater data collection to compare evaluated areas to a larger region.
ContributorsLaufer, Daniel (Author) / King, David (Thesis director) / Coseo, Paul (Committee member) / School of Geographical Sciences and Urban Planning (Contributor) / Barrett, The Honors College (Contributor)
Created2019-12
155109-Thumbnail Image.png
Description
Bicyclist and pedestrian safety is a growing concern in San Francisco, CA,

especially given the increasing numbers of residents choosing to bike and walk. Sharing

the roads with automobiles, these alternative road users are particularly vulnerable to

sustain serious injuries. With this in mind, it is important to identify the factors that

influence the

Bicyclist and pedestrian safety is a growing concern in San Francisco, CA,

especially given the increasing numbers of residents choosing to bike and walk. Sharing

the roads with automobiles, these alternative road users are particularly vulnerable to

sustain serious injuries. With this in mind, it is important to identify the factors that

influence the severity of bicyclist and pedestrian injuries in automobile collisions. This

study uses traffic collision data gathered from California Highway Patrol’s Statewide

Integrated Traffic Records System (SWITRS) to predict the most important

determinants of injury severity, given that a collision has occurred. Multivariate binomial

logistic regression models were created for both pedestrian and bicyclist collisions, with

bicyclist/pedestrian/driver characteristics and built environment characteristics used as

the independent variables. Results suggest that bicycle infrastructure is not an important

predictor of bicyclist injury severity, but instead bicyclist age, race, sobriety, and speed

played significant roles. Pedestrian injuries were influenced by pedestrian and driver age

and sobriety, crosswalk use, speed limit, and the type of vehicle at fault in the collision.

Understanding these key determinants that lead to severe and fatal injuries can help

local communities implement appropriate safety measures for their most susceptible

road users.
ContributorsMcIntyre, Andrew (Author) / Salon, Deborah (Thesis advisor) / Kuby, Mike (Committee member) / Chester, Mikhail (Committee member) / Arizona State University (Publisher)
Created2016
158350-Thumbnail Image.png
Description
The rapid rate of urbanization coupled with continued population growth and anthropogenic activities has resulted in a myriad of urban climate related impacts across different cities around the world. Hot-arid cities are more vulnerable to induced urban heat effects due to the intense solar radiation during most of the year,

The rapid rate of urbanization coupled with continued population growth and anthropogenic activities has resulted in a myriad of urban climate related impacts across different cities around the world. Hot-arid cities are more vulnerable to induced urban heat effects due to the intense solar radiation during most of the year, leading to increased ambient air temperature and outdoor/indoor discomfort in Phoenix, Arizona. With the fast growth of the capital city of Arizona, the automobile-dependent planning of the city contributed negatively to the outdoor thermal comfort and to the people's daily social lives. One of the biggest challenges for hot-arid cities is to mitigate against the induced urban heat increase and improve the outdoor thermal. The objective of this study is to propose a pragmatic and useful framework that would improve the outdoor thermal comfort, by being able to evaluate and select minimally invasive urban heat mitigation strategies that could be applied to the existing urban settings in the hot-arid area of Phoenix. The study started with an evaluation of existing microclimate conditions by means of multiple field observations cross a North-South oriented urban block of buildings within Arizona State University’s Downtown campus in Phoenix. The collected data was evaluated and analyzed for a better understanding of the different local climates within the study area, then used to evaluate and partially validate a computational fluid dynamics model, ENVI-Met. Furthermore, three mitigation strategies were analyzed to the Urban Canopy Layer (UCL) level, an increase in the fraction of permeable materials in the ground surface, adding different configurations of high/low Leaf Area Density (LAD) trees, and replacing the trees configurations with fabric shading. All the strategies were compared and analyzed to determine the most impactful and effective mitigation strategies. The evaluated strategies have shown a substantial cooling effect from the High LAD trees scenarios. Also, the fabric shading strategies have shown a higher cooling effect than the Low LAD trees. Integrating the trees scenarios with the fabric shading had close cooling effect results in the High LAD trees scenarios. Finally, how to integrate these successful strategies into practical situations was addressed.
ContributorsAldakheelallah, Abdullah (Author) / Reddy, T Agami (Thesis advisor) / Middel, Ariane (Committee member) / Coseo, Paul (Committee member) / Arizona State University (Publisher)
Created2020
157945-Thumbnail Image.png
Description
Moderate physical activity, such as walking and biking, positively affects physical and mental health. Outdoor thermal comfort is an important prerequisite for incentivizing an active lifestyle. Thus, extreme heat poses significant challenges for people who are outdoors by choice or necessity. The type and qualities of built infrastructure determine the

Moderate physical activity, such as walking and biking, positively affects physical and mental health. Outdoor thermal comfort is an important prerequisite for incentivizing an active lifestyle. Thus, extreme heat poses significant challenges for people who are outdoors by choice or necessity. The type and qualities of built infrastructure determine the intensity and duration of individual exposure to heat. As cities globally are shifting priorities towards non-motorized and public transit travel, more residents are expected to experience the city on their feet. Thus, physical conditions as well as psychological perception of the environment that affect thermal comfort will become paramount. Phoenix, Arizona, is used as a case study to examine the effectiveness of current public transit and street infrastructure to reduce heat exposure and affect the thermal comfort of walkers and public transit users.

The City of Phoenix has committed to public transit improvements in the Transportation 2050 plan and has recently adopted a Complete Streets Policy. Proposed changes include mobility improvements and creating a safe and comfortable environment for non-motorized road participants. To understand what kind of improvements would benefit thermal comfort the most, it is necessary to understand heat exposure at finer spatial scales, explore whether current bus shelter designs are adequate in mitigating heat-health effects, and comprehensively assess the impact of design on physical, psychological and behavioral aspects of thermal comfort. A study conducted at bus stops in one Phoenix neighborhood examined grey and green infrastructure types preferred for cooling and found relationships between perception of pleasantness and thermal sensation votes. Walking interviews conducted in another neighborhood event examined the applicability of a framework for walking behavior under the stress of heat, and how differences between the streets affected perceptions of the walkers. The interviews revealed that many of the structural themes from the framework of walking behavior were applicable, however, participants assessed the majority of the elements in their walk from a heat mitigation perspective. Finally, guiding questions for walkability in hot and arid climates were developed based on the literature review and results from the empirical studies. This dissertation contributes to filling the gap between walkability and outdoor thermal comfort, and presents methodology and findings that can be useful to address walkability and outdoor thermal comfort in the world’s hot cities as well as those in temperate climates that may face similar climate challenges in the future as the planet warms.
ContributorsDzyuban, Yuliya (Author) / Redman, Charles L. (Thesis advisor) / Coseo, Paul J. (Committee member) / Hondula, David M. (Committee member) / Arizona State University (Publisher)
Created2019
Description

Shade plays an important role in designing pedestrian-friendly outdoor spaces in hot desert cities. This study investigates the impact of photovoltaic canopy shade and tree shade on thermal comfort through meteorological observations and field surveys at a pedestrian mall on Arizona State University's Tempe campus. During the course of 1

Shade plays an important role in designing pedestrian-friendly outdoor spaces in hot desert cities. This study investigates the impact of photovoltaic canopy shade and tree shade on thermal comfort through meteorological observations and field surveys at a pedestrian mall on Arizona State University's Tempe campus. During the course of 1 year, on selected clear calm days representative of each season, we conducted hourly meteorological transects from 7:00 a.m. to 6:00 p.m. and surveyed 1284 people about their thermal perception, comfort, and preferences. Shade lowered thermal sensation votes by approximately 1 point on a semantic differential 9-point scale, increasing thermal comfort in all seasons except winter. Shade type (tree or solar canopy) did not significantly impact perceived comfort, suggesting that artificial and natural shades are equally efficient in hot dry climates. Globe temperature explained 51 % of the variance in thermal sensation votes and was the only statistically significant meteorological predictor. Important non-meteorological factors included adaptation, thermal comfort vote, thermal preference, gender, season, and time of day. A regression of subjective thermal sensation on physiological equivalent temperature yielded a neutral temperature of 28.6 °C. The acceptable comfort range was 19.1 °C-38.1 °C with a preferred temperature of 20.8 °C. Respondents exposed to above neutral temperature felt more comfortable if they had been in air-conditioning 5 min prior to the survey, indicating a lagged response to outdoor conditions. Our study highlights the importance of active solar access management in hot urban areas to reduce thermal stress.

ContributorsMiddel, Ariane (Author) / Selover, Nancy (Author) / Hagen, Bjorn (Author) / Chhetri, Nalini (Author)
Created2015-04-13
Description

These videos depict two miscible liquids with different densities and viscosities coming into contact. This study explores how a swellable test pad can be deployed for measuring urea in saliva by partially prefilling the pad with a miscible solution of greater viscosity and density. The resultant Korteweg stresses and viscous

These videos depict two miscible liquids with different densities and viscosities coming into contact. This study explores how a swellable test pad can be deployed for measuring urea in saliva by partially prefilling the pad with a miscible solution of greater viscosity and density. The resultant Korteweg stresses and viscous fingering patterns are analyzed using solutions with added food color through video analysis and image processing. Image analysis is simplified using the saturation channel after converting RGB image sequences to HSB. These videos are conjunction to an article submission to MDPI Bioengineering journal as supplementary files to enhance the breadth and depth of the content therein.

ContributorsClingan, H. (Author) / Rusk, D. (Author) / Smith, K. (Author) / Garcia, A. (Author)
Created2018-03-15