Matching Items (8)
Filtering by

Clear all filters

151696-Thumbnail Image.png
Description
The temperature of a planet's surface depends on numerous physical factors, including thermal inertia, albedo and the degree of insolation. Mars is a good target for thermal measurements because the low atmospheric pressure combined with the extreme dryness results in a surface dominated by large differences in thermal inertia, minimizing

The temperature of a planet's surface depends on numerous physical factors, including thermal inertia, albedo and the degree of insolation. Mars is a good target for thermal measurements because the low atmospheric pressure combined with the extreme dryness results in a surface dominated by large differences in thermal inertia, minimizing the effect of other physical properties. Since heat is propagated into the surface during the day and re-radiated at night, surface temperatures are affected by sub-surface properties down to several thermal skin depths. Because of this, orbital surface temperature measurements combined with a computational thermal model can be used to determine sub-surface structure. This technique has previously been applied to estimate the thickness and thermal inertia of soil layers on Mars on a regional scale, but the Mars Odyssey Thermal Emission Imaging System "THEMIS" instrument allows much higher-resolution thermal imagery to be obtained. Using archived THEMIS data and the KRC thermal model, a process has been developed for creating high-resolution maps of Martian soil layer thickness and thermal inertia, allowing investigation of the distribution of dust and sand at a scale of 100 m/pixel.
ContributorsHeath, Simon (Author) / Christensen, Philip R. (Philip Russel) (Thesis advisor) / Bel, James (Thesis advisor) / Hervig, Richard (Committee member) / Arizona State University (Publisher)
Created2013
141441-Thumbnail Image.png
Description

Objectives: To provide novel quantification and advanced measurements of surface temperatures (Ts) in playgrounds, employing multiple scales of data, and provide insight into hot-hazard mitigation techniques and designs for improved environmental and public health.

Methods: We conduct an analysis of Ts in two Metro-Phoenix playgrounds at three scales: neighborhood (1 km

Objectives: To provide novel quantification and advanced measurements of surface temperatures (Ts) in playgrounds, employing multiple scales of data, and provide insight into hot-hazard mitigation techniques and designs for improved environmental and public health.

Methods: We conduct an analysis of Ts in two Metro-Phoenix playgrounds at three scales: neighborhood (1 km resolution), microscale (6.8 m resolution), and touch-scale (1 cm resolution). Data were derived from two sources: airborne remote sensing (neighborhood and microscale) and in situ (playground site) infrared Ts (touch-scale). Metrics of surface-to-air temperature deltas (Ts–a) and scale offsets (errors) are introduced.

Results: Select in situ Ts in direct sunlight are shown to approach or surpass values likely to result in burns to children at touch-scales much finer than Ts resolved by airborne remote sensing. Scale offsets based on neighbourhood and microscale ground observations are 3.8 ◦C and 7.3 ◦C less than the Ts–a at the 1 cm touch-scale, respectively, and 6.6 ◦C and 10.1 ◦C lower than touch-scale playground equipment Ts, respectively. Hence, the coarser scales underestimate high Ts within playgrounds. Both natural (tree) and artificial (shade sail) shade types are associated with significant reductions in Ts.

Conclusions: A scale mismatch exists based on differing methods of urban Ts measurement. The sub-meter touch-scale is the spatial scale at which data must be collected and policies of urban landscape design and health must be executed in order to mitigate high Ts in high-contact environments such as playgrounds. Shade implementation is the most promising mitigation technique to reduce child burns, increase park usability, and mitigate urban heating.

ContributorsVanos, Jennifer K. (Author) / Middel, Ariane (Author) / McKercher, Grant R. (Author) / Kuras, Evan R. (Author) / Ruddell, Benjamin L. (Author)
Created2015-11-10
154314-Thumbnail Image.png
Description
Both volcanism and impact cratering produce ejecta and associated deposits incorporating a molten rock component. While the heat sources are different (exogenous vs. endogenous), the end results are landforms with similar morphologies including ponds and flows of impact melt and lava around the central crater. Ejecta from both impact and

Both volcanism and impact cratering produce ejecta and associated deposits incorporating a molten rock component. While the heat sources are different (exogenous vs. endogenous), the end results are landforms with similar morphologies including ponds and flows of impact melt and lava around the central crater. Ejecta from both impact and volcanic craters can also include a high percentage of melted rock. Using Lunar Reconnaissance Orbiter Camera Narrow Angle Camera (LROC NAC) images, crucial details of these landforms are finally revealed, suggesting a much more dynamic Moon than is generally appreciated. Impact melt ponds and flows at craters as small as several hundred meters in diameter provide empirical evidence of abundant melting during the impact cratering process (much more than was previously thought), and this melt is mobile on the lunar surface for a significant time before solidifying. Enhanced melt deposit occurrences in the lunar highlands (compared to the mare) suggest that porosity, target composition, and pre-existing topography influence melt production and distribution. Comparatively deep impact craters formed in young melt deposits connote a relatively rapid evolution of materials on the lunar surface. On the other end of the spectrum, volcanic eruptions have produced the vast, plains-style mare basalts. However, little was previously known about the details of small-area eruptions and proximal volcanic deposits due to a lack of resolution. High-resolution images reveal key insights into small volcanic cones (0.5-3 km in diameter) that resemble terrestrial cinder cones. The cones comprise inter-layered materials, spatter deposits, and lava flow breaches. The widespread occurrence of the cones in most nearside mare suggests that basaltic eruptions occur from multiple sources in each basin and/or that rootless eruptions are relatively common. Morphologies of small-area volcanic deposits indicate diversity in eruption behavior of lunar basaltic eruptions driven by magmatic volatiles. Finally, models of polar volatile behavior during impact-heating suggest that chemical alteration of minerals in the presence of liquid water is one possible outcome that was previously not thought possible on the Moon.
ContributorsStopar, Julie D (Author) / Robinson, Mark S. (Thesis advisor) / Bell, James (Committee member) / Christensen, Philip R. (Philip Russel) (Committee member) / Clarke, Amanda (Committee member) / Scowen, Paul (Committee member) / Arizona State University (Publisher)
Created2016
154927-Thumbnail Image.png
Description
Amorphous phases are detected over large regions of the Martian surface from orbit and in more localized deposits by rovers on the surface. Amorphous silicates can be primary or secondary in origin, both having formed through very different processes, so the unambiguous identification of these phases is important for understanding

Amorphous phases are detected over large regions of the Martian surface from orbit and in more localized deposits by rovers on the surface. Amorphous silicates can be primary or secondary in origin, both having formed through very different processes, so the unambiguous identification of these phases is important for understanding the geologic history of Mars. Secondary amorphous silicates are poorly understood and underrepresented in spectral libraries because they lack the long-range structural order that makes their crystalline counterparts identifiable in most analytical techniques. Fortunately, even amorphous materials have some degree of short-range order so that distinctions can be made with careful characterization.

Two sets of laboratory experiments were used to produce and characterize amorphous weathering products under probable conditions for the Martian surface, and one global spectral analysis using thermal-infrared (TIR) data from the Thermal Emission Spectrometer (TES) instrument was used to constrain variations in amorphous silicates across the Martian surface. The first set of experiments altered crystalline and glassy basalt samples in an open system under strong (pH 1) and moderate (pH 3) acidic conditions. The second set of experiments simulated a current-day Martian weathering scenario involving transient liquid water where basalt glass weathering solutions, formed in circumneutral (pH ~5.5 and 7) conditions, were rapidly evaporated, precipitating amorphous silicates. The samples were characterized using visible and near-infrared (VNIR) spectroscopy, TIR spectroscopy, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD).

All experiments formed amorphous silicate phases that are new to spectral libraries. Moderately acidic alteration experiments produced no visible or spectral evidence of alteration products, whereas exposure of basalt glass to strongly acidic fluids produced silica-rich alteration layers that are spectrally consistent with VNIR and TIR spectra from the circum-polar region of Mars, indicating this region has undergone acidic weathering. Circum-netural pH basalt weathering solution precipitates are consistent with amorphous materials measured by rovers in soil and rock surface samples in Gale and Gusev Craters, suggesting transient water interactions over the last 3 billion years. Global spectral analyses determine that alteration conditions have varied across the Martian surface, and that alteration has been long lasting.
ContributorsSmith, Rebecca (Author) / Christensen, Philip R. (Philip Russel) (Thesis advisor) / Shock, Everett (Committee member) / Hartnett, Hilairy (Committee member) / Shim, Sang-Heon (Committee member) / Sharp, Thomas (Committee member) / Arizona State University (Publisher)
Created2016
153790-Thumbnail Image.png
Description
Among volcanic gases, sulfur dioxide (SO2) is by far the most commonly measured. More than a monitoring proxy for volcanic degassing, SO2 has the potential to alter climate patterns. Persistently active explosive volcanoes are characterized by short explosive bursts, which often occur at periodic intervals numerous times per day,

Among volcanic gases, sulfur dioxide (SO2) is by far the most commonly measured. More than a monitoring proxy for volcanic degassing, SO2 has the potential to alter climate patterns. Persistently active explosive volcanoes are characterized by short explosive bursts, which often occur at periodic intervals numerous times per day, spanning years to decades. SO2 emissions at those volcanoes are poorly constrained, in large part because the current satellite monitoring techniques are unable to detect or quantify plumes of low concentration in the troposphere. Eruption plumes also often show high concentrations of ash and/or aerosols, which further inhibit the detection methods. In this work I focus on quantifying volcanic gas emissions at persistently active explosive volcanoes and their variations over short timescales (minutes to hours), in order to document their contribution to natural SO2 flux as well as investigate the physical processes that control their behavior.

In order to make these measurements, I first develop and assemble a UV ground-based instrument, and validate it against an independently measured source of SO2 at a coal-burning power plant in Arizona. I establish a measurement protocol and demonstrate that the instrument measures SO2 fluxes with < 20 % error. Using the same protocol, I establish a record of the degassing patterns at Semeru volcano (Indonesia), a volcano that has been producing cycles of repeated explosions with periods of minutes to hours for the past several decades. Semeru produces an average of 21-71 tons of SO2 per day, amounting to a yearly output of 8-26 Mt.

Using the Semeru data, along with a 1-D transient numerical model of magma ascent, I test the validity of a model in which a viscous plug at the top of the conduit produces cycles of eruption and gas release. I find that it can be a valid hypothesis to explain the observed patterns of degassing at Semeru. Periodic behavior in such a system occurs for a very narrow range of conditions, for which the mass balance between magma flux and open-system gas escape repeatedly generates a viscous plug, pressurizes the magma beneath the plug, and then explosively disrupts it.
ContributorsSmekens, Jean-François (Author) / Clarke, Amanda (Thesis advisor) / Christensen, Philip R. (Philip Russel) (Committee member) / Williams, Stanley (Committee member) / Burton, Michael (Committee member) / Fink, Jonathan (Committee member) / Moore, Gordon (Committee member) / Arizona State University (Publisher)
Created2015
153231-Thumbnail Image.png
Description
Much of Mars' surface is mantled by bright dust, which masks the spectral features used to interpret the mineralogy of the underlying bedrock. Despite the wealth of near-infrared (NIR) and thermal infrared data returned from orbiting spacecraft in recent decades, the detailed bedrock composition of approximately half of the martian

Much of Mars' surface is mantled by bright dust, which masks the spectral features used to interpret the mineralogy of the underlying bedrock. Despite the wealth of near-infrared (NIR) and thermal infrared data returned from orbiting spacecraft in recent decades, the detailed bedrock composition of approximately half of the martian surface remains relatively unknown due to dust cover. To address this issue, and to help gain a better understanding of the bedrock mineralogy in dusty regions, data from the Thermal Emission Spectrometer (TES) Dust Cover Index (DCI) and Mars Reconnaissance Orbiter (MRO) Mars Color Imager (MARCI) were used to identify 63 small localized areas within the classical bright dusty regions of Arabia Terra, Elysium Planitia, and Tharsis as potential "windows" through the dust; that is, areas where the dust cover is thin enough to permit infrared remote sensing of the underlying bedrock. The bedrock mineralogy of each candidate "window" was inferred using processed spectra from the Mars Express (MEx) Observatoire pour la Mineralogie, l'Eau, les Glaces et l'Activité (OMEGA) NIR spectrometer and, where possible, TES. 12 areas of interest returned spectra that are consistent with mineral species expected to be present at the regional scale, such as high- and low-calcium pyroxene, olivine, and iron-bearing glass. Distribution maps were created using previously defined index parameters for each species present within an area. High-quality TES spectra, if present within an area of interest, were deconvolved to estimate modal mineralogy and support NIR results. OMEGA data from Arabia Terra and Elysium Planitia are largely similar and indicate the presence of high-calcium pyroxene with significant contributions of glass and olivine, while TES data suggest an intermediate between the established southern highlands and Syrtis Major compositions. Limited data from Tharsis indicate low-calcium pyroxene mixed with lesser amounts of high-calcium pyroxene and perhaps glass. TES data from southern Tharsis correlate well with the previously inferred compositions of the Aonium and Mare Sirenum highlands immediately to the south.
ContributorsLai, Jason Chi-Shun (Author) / Bell, James (Thesis advisor) / Christensen, Philip R. (Philip Russel) (Committee member) / Hervig, Richard (Committee member) / Arizona State University (Publisher)
Created2014
157998-Thumbnail Image.png
Description
The marked increase in the inflow of remotely sensed data from satellites have trans- formed the Earth and Space Sciences to a data rich domain creating a rich repository for domain experts to analyze. These observations shed light on a diverse array of disciplines ranging from monitoring Earth system components

The marked increase in the inflow of remotely sensed data from satellites have trans- formed the Earth and Space Sciences to a data rich domain creating a rich repository for domain experts to analyze. These observations shed light on a diverse array of disciplines ranging from monitoring Earth system components to planetary explo- ration by highlighting the expected trend and patterns in the data. However, the complexity of these patterns from local to global scales, coupled with the volume of this ever-growing repository necessitates advanced techniques to sequentially process the datasets to determine the underlying trends. Such techniques essentially model the observations to learn characteristic parameters of data-generating processes and highlight anomalous planetary surface observations to help domain scientists for making informed decisions. The primary challenge in defining such models arises due to the spatio-temporal variability of these processes.

This dissertation introduces models of multispectral satellite observations that sequentially learn the expected trend from the data by extracting salient features of planetary surface observations. The main objectives are to learn the temporal variability for modeling dynamic processes and to build representations of features of interest that is learned over the lifespan of an instrument. The estimated model parameters are then exploited in detecting anomalies due to changes in land surface reflectance as well as novelties in planetary surface landforms. A model switching approach is proposed that allows the selection of the best matched representation given the observations that is designed to account for rate of time-variability in land surface. The estimated parameters are exploited to design a change detector, analyze the separability of change events, and form an expert-guided representation of planetary landforms for prioritizing the retrieval of scientifically relevant observations with both onboard and post-downlink applications.
ContributorsChakraborty, Srija (Author) / Papandreou-Suppappola, Antonia (Thesis advisor) / Christensen, Philip R. (Philip Russel) (Thesis advisor) / Richmond, Christ (Committee member) / Maurer, Alexander (Committee member) / Arizona State University (Publisher)
Created2019
128945-Thumbnail Image.png
Description

Summer daytime cooling efficiency of various land cover is investigated for the urban core of Phoenix, Arizona, using the Local-Scale Urban Meteorological Parameterization Scheme (LUMPS). We examined the urban energy balance for 2 summer days in 2005 to analyze the daytime cooling-water use tradeoff and the timing of sensible heat

Summer daytime cooling efficiency of various land cover is investigated for the urban core of Phoenix, Arizona, using the Local-Scale Urban Meteorological Parameterization Scheme (LUMPS). We examined the urban energy balance for 2 summer days in 2005 to analyze the daytime cooling-water use tradeoff and the timing of sensible heat reversal at night. The plausibility of the LUMPS model results was tested using remotely sensed surface temperatures from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) imagery and reference evapotranspiration values from a meteorological station. Cooling efficiency was derived from sensible and latent heat flux differences. The time when the sensible heat flux turns negative (sensible heat flux transition) was calculated from LUMPS simulated hourly fluxes. Results indicate that the time when the sensible heat flux changes direction at night is strongly influenced by the heat storage capacity of different land cover types and by the amount of vegetation. Higher heat storage delayed the transition up to 3 h in the study area, while vegetation expedited the sensible heat reversal by 2 h. Cooling efficiency index results suggest that overall, the Phoenix urban core is slightly more efficient at cooling than the desert, but efficiencies do not increase much with wet fractions higher than 20%. Industrial sites with high impervious surface cover and low wet fraction have negative cooling efficiencies. Findings indicate that drier neighborhoods with heterogeneous land uses are the most efficient landscapes in balancing cooling and water use in Phoenix. However, further factors such as energy use and human vulnerability to extreme heat have to be considered in the cooling-water use tradeoff, especially under the uncertainties of future climate change.

ContributorsMiddel, Ariane (Author) / Brazel, Anthony J. (Author) / Kaplan, Shai (Author) / Myint, Soe W. (Author)
Created2012-08-12