Matching Items (3)
Filtering by

Clear all filters

133979-Thumbnail Image.png
Description
As technology increases in capability, its purposes can become multifaceted, meaning it must accomplish multiple requirements as opposed to just one. An example of said technology could be high speed airplane wings, which must be strong enough to withstand high loads, light enough to enable the aircraft to fly, and

As technology increases in capability, its purposes can become multifaceted, meaning it must accomplish multiple requirements as opposed to just one. An example of said technology could be high speed airplane wings, which must be strong enough to withstand high loads, light enough to enable the aircraft to fly, and have enough thermal conductivity to withstand high temperatures. Two objectives in particular, topology and sensor deployment, are important for designing structures such as robots which need accurate sensor readings, known as observability. In an attempt to display how these two dissimilar objectives coincide with each other, a project was created around the idea of finding an optimum balance of both. This supposed state would allow the structure not only to remain strong and light but also to be monitored via sensors with a high degree of accuracy. The main focus of the project was to compare levels of observability of two known factors of input estimation error. The first system involves a structure that has been topologically optimized for compliance minimization, which increases input estimation error. The second system produces structures with random placements of sensors within the structure, which, as the average distance from load to sensor increases, induces input estimation error. These two changes in observability were compared to see which had a more direct effect. The main findings were that changes in topology had a much more direct effect over levels of observability than changes in sensor placement. Results also show that theoretical input estimation time is significantly reduced when compared to previous systems.
ContributorsLeaton, Andrew Griffin (Author) / Ren, Yi (Thesis director) / Mignolet, Marc (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134460-Thumbnail Image.png
Description
Composite structures, particularly carbon-fiber reinforced polymers (CFRPs) have been subject to significant development in recent years. They have become increasingly reliable, durable, and versatile, finding a role in a wide variety of applications. When compared to conventional materials, CFRPs have several advantages, including extremely high strength, high in-plane and flexural

Composite structures, particularly carbon-fiber reinforced polymers (CFRPs) have been subject to significant development in recent years. They have become increasingly reliable, durable, and versatile, finding a role in a wide variety of applications. When compared to conventional materials, CFRPs have several advantages, including extremely high strength, high in-plane and flexural stiffness, and very low weight. However, the application of CFRPs and other fiber-matrix composites is complicated due to the manner in which damage propagates throughout the structure, and the associated difficulty in identifying and repairing such damages prior to structural failure. In this paper, a methods of detecting and localizing delaminations withint a complex foam-core composite structure using non-destructive evaluation (NDE) and structural health montoring (SHM) is investigated. The two NDE techniques utilized are flash thermography and low frequency ultrasonic C-Scan, which were used to confirm the location of seeded damages within the specimens and to quantify the size of the damages. Macro fiber composite sensors (MFCs) and piezoelectric sensors (PZTs) were used as actuators and sensors in pitch-catch and pulse-echo configurations in order to study mode conversions and wave reflections of the propagated Lamb waves when interacting with interply delaminations and foam-core separations. The final results indicated that the investigated NDE and SHM techniques are capable of detecting and quantifying damages within complex X-COR composites, with the SHM techniques having the potential to be used \textit{in situ} with a high degree of accuracy. It was also observed that the presence of the X-COR significantly alters the behavior of the wave when compared to a standard CFRP composite plate, making it necessary to account for any variations if wave-base techniques are to be used for damage detection and quantification. Lastly, a time-space model was created to model the wave interactions with damages located within X-COR complex sandwich composites.
Created2017-05
127819-Thumbnail Image.png
Description

The Future of Wastewater Sensing workshop is part of a collaboration between Arizona State University Center for Nanotechnology in Society in the School for the Future of Innovation in Society, the Biodesign Institute’s Center for Environmental Security, LC Nano, and the Nano-enabled Water Treatment (NEWT) Systems NSF Engineering Research Center.

The Future of Wastewater Sensing workshop is part of a collaboration between Arizona State University Center for Nanotechnology in Society in the School for the Future of Innovation in Society, the Biodesign Institute’s Center for Environmental Security, LC Nano, and the Nano-enabled Water Treatment (NEWT) Systems NSF Engineering Research Center. The Future of Wastewater Sensing workshop explores how technologies for studying, monitoring, and mining wastewater and sewage sludge might develop in the future, and what consequences may ensue for public health, law enforcement, private industry, regulations and society at large. The workshop pays particular attention to how wastewater sensing (and accompanying research, technologies, and applications) can be innovated, regulated, and used to maximize societal benefit and minimize the risk of adverse outcomes, when addressing critical social and environmental challenges.

ContributorsWithycombe Keeler, Lauren (Researcher) / Halden, Rolf (Researcher) / Selin, Cynthia (Researcher) / Center for Nanotechnology in Society (Contributor)
Created2015-11-01