Matching Items (3)
Filtering by

Clear all filters

166227-Thumbnail Image.png
Description
Artistic expression can be made more accessible through the use of technological interfaces such as auditory analysis, generative artificial intelligence models, and simplification of complicated systems, providing a way for human driven creativity to serve as an input that allow users to creatively express themselves. Studies and testing were done

Artistic expression can be made more accessible through the use of technological interfaces such as auditory analysis, generative artificial intelligence models, and simplification of complicated systems, providing a way for human driven creativity to serve as an input that allow users to creatively express themselves. Studies and testing were done with industry standard performance technology and protocols to create an accessible interface for creative expression. Artificial intelligence models were created to generate art based on simple text inputs. Users were then invited to display their creativity using the software, and a comprehensive performance showcased the potential of the system for artistic expression.
ContributorsPardhe, Joshua (Author) / Lim, Kang Yi (Co-author) / Meuth, Ryan (Thesis director) / Brian, Jennifer (Committee member) / Hermann, Kristen (Committee member) / Barrett, The Honors College (Contributor) / Dean, W.P. Carey School of Business (Contributor) / Watts College of Public Service & Community Solut (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-05
166228-Thumbnail Image.png
Description
Artistic expression can be made more accessible through the use of technological interfaces such as auditory analysis, generative artificial intelligence models, and simplification of complicated systems, providing a way for human driven creativity to serve as an input that allow users to creatively express themselves. Studies and testing were done

Artistic expression can be made more accessible through the use of technological interfaces such as auditory analysis, generative artificial intelligence models, and simplification of complicated systems, providing a way for human driven creativity to serve as an input that allow users to creatively express themselves. Studies and testing were done with industry standard performance technology and protocols to create an accessible interface for creative expression. Artificial intelligence models were created to generate art based on simple text inputs. Users were then invited to display their creativity using the software, and a comprehensive performance showcased the potential of the system for artistic expression.
ContributorsLim, Kang Yi (Author) / Pardhe, Joshua (Co-author) / Meuth, Ryan (Thesis director) / Brian, Jennifer (Committee member) / Hermann, Kristen (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-05
Description

Agassiz’s desert tortoise (Gopherus agassizii) is a long-lived species native to the Mojave Desert and is listed as threatened under the US Endangered Species Act. To aid conservation efforts for preserving the genetic diversity of this species, we generated a whole genome reference sequence with an annotation based on dee

Agassiz’s desert tortoise (Gopherus agassizii) is a long-lived species native to the Mojave Desert and is listed as threatened under the US Endangered Species Act. To aid conservation efforts for preserving the genetic diversity of this species, we generated a whole genome reference sequence with an annotation based on deep transcriptome sequences of adult skeletal muscle, lung, brain, and blood. The draft genome assembly for G. agassizii has a scaffold N50 length of 252 kbp and a total length of 2.4 Gbp. Genome annotation reveals 20,172 protein-coding genes in the G. agassizii assembly, and that gene structure is more similar to chicken than other turtles. We provide a series of comparative analyses demonstrating (1) that turtles are among the slowest-evolving genome-enabled reptiles, (2) amino acid changes in genes controlling desert tortoise traits such as shell development, longevity and osmoregulation, and (3) fixed variants across the Gopherus species complex in genes related to desert adaptations, including circadian rhythm and innate immune response. This G. agassizii genome reference and annotation is the first such resource for any tortoise, and will serve as a foundation for future analysis of the genetic basis of adaptations to the desert environment, allow for investigation into genomic factors affecting tortoise health, disease and longevity, and serve as a valuable resource for additional studies in this species complex.

Data Availability: All genomic and transcriptomic sequence files are available from the NIH-NCBI BioProject database (accession numbers PRJNA352725, PRJNA352726, and PRJNA281763). All genome assembly, transcriptome assembly, predicted protein, transcript, genome annotation, repeatmasker, phylogenetic trees, .vcf and GO enrichment files are available on Harvard Dataverse (doi:10.7910/DVN/EH2S9K).

ContributorsTollis, Marc (Author) / DeNardo, Dale F (Author) / Cornelius, John A (Author) / Dolby, Greer A (Author) / Edwards, Taylor (Author) / Henen, Brian T. (Author) / Karl, Alice E. (Author) / Murphy, Robert W. (Author) / Kusumi, Kenro (Author)
Created2017-05-31