Matching Items (2)
Filtering by

Clear all filters

152717-Thumbnail Image.png
Description
Driving under the influence (DUI) is a problem in American society that has received considerable attention over recent decades from local police agencies, lobby groups, and the news media. While punitive policies, administrative sanctions and aggressive media campaigns to deter drinking and driving have been used in the past, less

Driving under the influence (DUI) is a problem in American society that has received considerable attention over recent decades from local police agencies, lobby groups, and the news media. While punitive policies, administrative sanctions and aggressive media campaigns to deter drinking and driving have been used in the past, less conventional methods to restructure or modify the urban environment to discourage drunk driving have been underused. Explanations with regard to DUIs are policy driven more often than they are guided by criminological theory. The current study uses the routine activities perspective as a backdrop for assessing whether a relatively new mode of transportation - an urban light rail system - in a large metropolitan city in the Southwestern U.S. can alter behaviors of individuals who are likely to drive under the influence of alcohol. The study is based on a survey of undergraduate students from a large university that has several stops on the light rail system connecting multiple campuses. This thesis examines whether the light rail system has a greater effect on students whose routines activities (relatively unsupervised college youth with greater access to cars and bars) are more conducive to driving under the influence of alcohol. An additional purpose of the current study is to determine whether proximity to the light rail system is associated with students driving under the influence of alcohol, while controlling for other criminological factors
ContributorsBroyles, Joshua (Author) / Ready, Justin (Thesis advisor) / Reisig, Michael (Committee member) / Telep, Cody (Committee member) / Arizona State University (Publisher)
Created2014
128945-Thumbnail Image.png
Description

Summer daytime cooling efficiency of various land cover is investigated for the urban core of Phoenix, Arizona, using the Local-Scale Urban Meteorological Parameterization Scheme (LUMPS). We examined the urban energy balance for 2 summer days in 2005 to analyze the daytime cooling-water use tradeoff and the timing of sensible heat

Summer daytime cooling efficiency of various land cover is investigated for the urban core of Phoenix, Arizona, using the Local-Scale Urban Meteorological Parameterization Scheme (LUMPS). We examined the urban energy balance for 2 summer days in 2005 to analyze the daytime cooling-water use tradeoff and the timing of sensible heat reversal at night. The plausibility of the LUMPS model results was tested using remotely sensed surface temperatures from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) imagery and reference evapotranspiration values from a meteorological station. Cooling efficiency was derived from sensible and latent heat flux differences. The time when the sensible heat flux turns negative (sensible heat flux transition) was calculated from LUMPS simulated hourly fluxes. Results indicate that the time when the sensible heat flux changes direction at night is strongly influenced by the heat storage capacity of different land cover types and by the amount of vegetation. Higher heat storage delayed the transition up to 3 h in the study area, while vegetation expedited the sensible heat reversal by 2 h. Cooling efficiency index results suggest that overall, the Phoenix urban core is slightly more efficient at cooling than the desert, but efficiencies do not increase much with wet fractions higher than 20%. Industrial sites with high impervious surface cover and low wet fraction have negative cooling efficiencies. Findings indicate that drier neighborhoods with heterogeneous land uses are the most efficient landscapes in balancing cooling and water use in Phoenix. However, further factors such as energy use and human vulnerability to extreme heat have to be considered in the cooling-water use tradeoff, especially under the uncertainties of future climate change.

ContributorsMiddel, Ariane (Author) / Brazel, Anthony J. (Author) / Kaplan, Shai (Author) / Myint, Soe W. (Author)
Created2012-08-12