Matching Items (3)
Filtering by

Clear all filters

141381-Thumbnail Image.png
Description

This study investigates the impact of urban form and landscaping type on the mid-afternoon microclimate in semi-arid Phoenix, Arizona. The goal is to find effective urban form and design strategies to ameliorate temperatures during the summer months. We simulated near-ground air temperatures for typical residential neighborhoods in Phoenix using the

This study investigates the impact of urban form and landscaping type on the mid-afternoon microclimate in semi-arid Phoenix, Arizona. The goal is to find effective urban form and design strategies to ameliorate temperatures during the summer months. We simulated near-ground air temperatures for typical residential neighborhoods in Phoenix using the three-dimensional microclimate model ENVI-met. The model was validated using weather observations from the North Desert Village (NDV) landscape experiment, located on the Arizona State University's Polytechnic campus. The NDV is an ideal site to determine the model's input parameters, since it is a controlled environment recreating three prevailing residential landscape types in the Phoenix metropolitan area (mesic, oasis, and xeric).

After validation, we designed five neighborhoods with different urban forms that represent a realistic cross-section of typical residential neighborhoods in Phoenix. The scenarios follow the Local Climate Zone (LCZ) classification scheme after Stewart and Oke. We then combined the neighborhoods with three landscape designs and, using ENVI-met, simulated microclimate conditions for these neighborhoods for a typical summer day. Results were analyzed in terms of mid-afternoon air temperature distribution and variation, ventilation, surface temperatures, and shading. Findings show that advection is important for the distribution of within-design temperatures and that spatial differences in cooling are strongly related to solar radiation and local shading patterns. In mid-afternoon, dense urban forms can create local cool islands. Our approach suggests that the LCZ concept is useful for planning and design purposes.

ContributorsMiddel, Ariane (Author) / Hab, Kathrin (Author) / Brazel, Anthony J. (Author) / Martin, Chris A. (Author) / Guhathakurta, Subhrajit (Author)
Created2013-12-01
190912-Thumbnail Image.png
Description
As white-nose syndrome (WNS) spreads across North America, generating baseline data on bats hibernating outside of the affected area is critical. To illustrate, despite the imminent arrival of Pseudogymnoascus destructans (Pd) to Arizona (AZ), little is known about bat hibernation in the Southwest. With the current amount of information, if

As white-nose syndrome (WNS) spreads across North America, generating baseline data on bats hibernating outside of the affected area is critical. To illustrate, despite the imminent arrival of Pseudogymnoascus destructans (Pd) to Arizona (AZ), little is known about bat hibernation in the Southwest. With the current amount of information, if Pd spreads throughout the state, detection of cases would be limited, and severity of disease and magnitude of mortality impossible to accurately estimate. Thus, my study monitored hibernating bats in AZ to increase knowledge and investigate potential WNS impacts on these populations. Utilizing passive acoustic monitoring, internal cave surveys, environmental monitoring, and thermal imaging, my study quantified microclimate preferences, hibernation lengths, hibernation behaviors, population dynamics, and species compositions of bats hibernating in three north-central AZ caves. Hibernation lasted between 104 and 162 days, from late October through mid- March, during which time bats (primarily Corynorhinus townsendii and Myotis species) roosted at locations with an average of 4.7oC (range = -0.2oC – 12.1oC), 59.6% relative humidity (range = 39.6% - 75.9%), and 0.4 kPa water vapor pressure deficit (range = 0.2 kPa – 0.8 kPa). A maximum of 40 individuals were observed in any hibernacula and clustering behavior occurred in only 4.1% of torpid bats. Bats selected cold and dry roost sites within caves. Results suggest Pd could proliferate on some bats hibernating in colder areas of AZ hibernacula, yet the range of observed roost humidities was lower than optimal for Pd growth. Hibernation length in north-central AZ is longer than predicted for Myotis species at similar latitudes and may be long enough to pose over- winter survival risks if WNS emerges in AZ populations. Yet, a natural tendency for mid-winter activity, which I observed by multiple species, may allow for foraging opportunities and water replenishment, and therefore promote survival in bats utilizing these arid and cold habitats in winter. Additionally, the relatively solitary behaviors I observed, including virtually no clustering activity and a maximum of 40 bats per hibernacula, may keep rates of Pd transmission low in these Southwest bat populations.
ContributorsHutcherson, Hayden K (Author) / Bateman, Heather (Thesis advisor) / Moore, Marianne (Committee member) / Lewis, Jesse (Committee member) / Arizona State University (Publisher)
Created2023
Description

This study investigates the impact of urban form and landscaping type on the mid-afternoon microclimate in semi-arid Phoenix, Arizona. The goal is to find effective urban form and design strategies to ameliorate temperatures during the summer months. We simulated near-ground air temperatures for typical residential neighborhoods in Phoenix using the

This study investigates the impact of urban form and landscaping type on the mid-afternoon microclimate in semi-arid Phoenix, Arizona. The goal is to find effective urban form and design strategies to ameliorate temperatures during the summer months. We simulated near-ground air temperatures for typical residential neighborhoods in Phoenix using the three-dimensional microclimate model ENVI-met. The model was validated using weather observations from the North Desert Village (NDV) landscape experiment, located on the Arizona State University's Polytechnic campus. The NDV is an ideal site to determine the model's input parameters, since it is a controlled environment recreating three prevailing residential landscape types in the Phoenix metropolitan area (mesic, oasis, and xeric). After validation, we designed five neighborhoods with different urban forms that represent a realistic cross-section of typical residential neighborhoods in Phoenix. The scenarios follow the Local Climate Zone (LCZ) classification scheme after Stewart and Oke. We then combined the neighborhoods with three landscape designs and, using ENVI-met, simulated microclimate conditions for these neighborhoods for a typical summer day. Results were analyzed in terms of mid-afternoon air temperature distribution and variation, ventilation, surface temperatures, and shading. Findings show that advection is important for the distribution of within-design temperatures and that spatial differences in cooling are strongly related to solar radiation and local shading patterns. In mid-afternoon, dense urban forms can create local cool islands. Our approach suggests that the LCZ concept is useful for planning and design purposes.

ContributorsMiddel, Ariane (Author) / Hab, Kathrin (Author) / Brazel, Anthony J. (Author) / Martin, Chris A. (Author) / Guhathakurta, Subhrajit (Author)
Created2014-02