Matching Items (5)
Filtering by

Clear all filters

148477-Thumbnail Image.png
Description

The purpose of this study is to collect baseline internal and external pressure data for the three most commonly used pelvic circumferential compression devices (PCCD). Unstable pelvic fractures as a result of automobile accidents, falls, and other traumatic injuries mortality rate [3]. Early use of pelvic circumferential compression devices can

The purpose of this study is to collect baseline internal and external pressure data for the three most commonly used pelvic circumferential compression devices (PCCD). Unstable pelvic fractures as a result of automobile accidents, falls, and other traumatic injuries mortality rate [3]. Early use of pelvic circumferential compression devices can mitigate fatal outcomes [4]-[5]. Prolonged eternal pressure above 9.3kPa can result in long-term soft tissue damage and pressure ulcers [7]. This study hypothesizes that the application of the three most commonly used PCCDs would result in the same mean maximum point pressure exertion. To study this, internal and external, both analog and digital, pressure apparati were used to collect data. The results of this data collection demonstrate a discrepancy in the pressure distribution between right and left greater trochanters within each PCCD. Additionally, the results suggest there is an effect of internal packing on the pressure exertion externally at the two greater trochanters within each PCCD. Lastly, the differences in pressure exertion between each PCCD, internally and externally, were inconclusive as some compared metrics resulted in statistically significant results while others did not. The methodologies employed in this study can be improved through fixation of pressure collection instruments, utilization of digital pressure mats, and removal of confounding factors. The results of this study indicate that digitized, discrete data over a fixed time interval may be clinically useful, suggesting that a digital data collection would yield more reliable data. Additionally, internally mounted pressure sensor data will provide more precise results than the analog method employed herein, as well as provide insight towards bone reduction and displacement following the application of PCCDs. Finally, the information gathered from this study can be utilized to improve upon existing technologies to create a more innovative solution.

ContributorsMoore, Kameron James (Co-author) / Dewald, Alison (Co-author) / Pizziconi, Vincent (Thesis director) / Bogert, James (Committee member) / Harrington Bioengineering Program (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148478-Thumbnail Image.png
Description

The purpose of this study is to collect baseline internal and external pressure data for the three most commonly used pelvic circumferential compression devices (PCCD). Unstable pelvic fractures as a result of automobile accidents, falls, and other traumatic injuries mortality rate [3]. Early use of pelvic circumferential compression devices can

The purpose of this study is to collect baseline internal and external pressure data for the three most commonly used pelvic circumferential compression devices (PCCD). Unstable pelvic fractures as a result of automobile accidents, falls, and other traumatic injuries mortality rate [3]. Early use of pelvic circumferential compression devices can mitigate fatal outcomes [4]-[5]. Prolonged eternal pressure above 9.3kPa can result in long-term soft tissue damage and pressure ulcers [7]. This study hypothesizes that the application of the three most commonly used PCCDs would result in the same mean maximum point pressure exertion. To study this, internal and external, both analog and digital, pressure apparati were used to collect data. The results of this data collection demonstrate a discrepancy in the pressure distribution between right and left greater trochanters within each PCCD. Additionally, the results suggest there is an effect of internal packing on the pressure exertion externally at the two greater trochanters within each PCCD. Lastly, the differences in pressure exertion between each PCCD, internally and externally, were inconclusive as some compared metrics resulted in statistically significant results while others did not. The methodologies employed in this study can be improved through fixation of pressure collection instruments, utilization of digital pressure mats, and removal of confounding factors. The results of this study indicate that digitized, discrete data over a fixed time interval may be clinically useful, suggesting that a digital data collection would yield more reliable data. Additionally, internally mounted pressure sensor data will provide more precise results than the analog method employed herein, as well as provide insight towards bone reduction and displacement following the application of PCCDs. Finally, the information gathered from this study can be utilized to improve upon existing technologies to create a more innovative solution.

Created2021-05
148243-Thumbnail Image.png
Description

Brave Bears was a Barrett creative project that operated under local non-profit organizations, Amanda Hope Rainbow Angels and Arizona Women’s Recovery Center. Amanda Hope Rainbow Angels provides support and education for children fighting cancer and their families. Arizona Women’s Recovery Center provides rehabilitation programs for women fighting substance abuse and

Brave Bears was a Barrett creative project that operated under local non-profit organizations, Amanda Hope Rainbow Angels and Arizona Women’s Recovery Center. Amanda Hope Rainbow Angels provides support and education for children fighting cancer and their families. Arizona Women’s Recovery Center provides rehabilitation programs for women fighting substance abuse and housing for the women and their children. The Brave Bears Project was focused on helping children in these situations cope with the trauma they are experiencing. The children received a teddy bear, which is a transitional object. In addition, a clay pendant with the word, “brave” pressed into it was tied around the bear’s neck with a ribbon. A poem of explanation and encouragement was also included.<br/><br/>The teddy bear provided comfort to children experiencing emotionally distressing situations as they receive treatment for their illness or as their mom undergoes rehabilitation. This can be in the form of holding the teddy bear when they feel frightened, anxious, lonely or depressed. The “brave” pendant and poem seek to encourage them and acknowledge their trauma and ability to persevere.

ContributorsRichards, Emma Joy (Author) / Lopez, Kristina (Thesis director) / Safyer, Paige (Committee member) / College of Health Solutions (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147647-Thumbnail Image.png
Description

Carbohydrate counting has been shown to improve HbA1c levels for people with diabetes. However, the learning curve and inconvenience of carbohydrate counting make it difficult for patients to adhere to it. A deep learning model is proposed to identify food from an image, where it can help the user manage

Carbohydrate counting has been shown to improve HbA1c levels for people with diabetes. However, the learning curve and inconvenience of carbohydrate counting make it difficult for patients to adhere to it. A deep learning model is proposed to identify food from an image, where it can help the user manage their carbohydrate counting. This early model has a 68.3% accuracy of identifying 101 different food classes. A more refined model in future work could be deployed into a mobile application to identify food the user is about to consume and log it for easier carbohydrate counting.

ContributorsCarreto, Cesar (Author) / Pizziconi, Vincent (Thesis director) / Vernon, Brent (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
131702-Thumbnail Image.png
Description
The adaptive artificial-intelligence (AI) medical device industry is a novel industry in the United States offering innovations to the healthcare field. The rapid expansion of this industry in recent years has drawn attention from multiple stakeholders causing a heated debate about how to introduce these innovations into the market while

The adaptive artificial-intelligence (AI) medical device industry is a novel industry in the United States offering innovations to the healthcare field. The rapid expansion of this industry in recent years has drawn attention from multiple stakeholders causing a heated debate about how to introduce these innovations into the market while maintaining patient safety and treatment efficacy. Since early 2019, the U.S. Food and Drug Administration (FDA) has been releasing statements in regards to the improvement of regulation for this new technology, but has yet to take further actions. Dilemmas including 1) a difficult regulatory process, 2) a heightening financial burden and 3) looming liability issues, are reasons adaptive AI medical devices have struggled to be advanced. By conducting a thorough analysis of these 3 issues, recognizing the intricacies of them separately and together, this study develops a better understanding of the landscape adaptive AI technology is facing and provides a clearer picture for the future of the industry.
ContributorsOgden, Ravyn Nicole (Author) / Coursen, Jerry (Thesis director) / Pizziconi, Vincent (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05