Matching Items (18)
Filtering by

Clear all filters

133102-Thumbnail Image.png
Description
Advances in computational processing have made big data analysis in fields like music information retrieval (MIR) possible. Through MIR techniques researchers have been able to study information on a song, its musical parameters, the metadata generated by the song's listeners, and contextual data regarding the artists and listeners (Schedl, 2014).

Advances in computational processing have made big data analysis in fields like music information retrieval (MIR) possible. Through MIR techniques researchers have been able to study information on a song, its musical parameters, the metadata generated by the song's listeners, and contextual data regarding the artists and listeners (Schedl, 2014). MIR research techniques have been applied within the field of music and emotions research to help analyze the correlative properties between the music information and the emotional output. By pairing methods within music and emotions research with the analysis of the musical features extracted through MIR, researchers have developed predictive models for emotions within a musical piece. This research has increased our understanding of the correlative properties of certain musical features like pitch, timbre, rhythm, dynamics, mel frequency cepstral coefficients (MFCC's), and others, to the emotions evoked by music (Lartillot 2008; Schedl 2014) This understanding of the correlative properties has enabled researchers to generate predictive models of emotion within music based on listeners' emotional response to it. However, robust models that account for a user's individualized emotional experience and the semantic nuances of emotional categorization have eluded the research community (London, 2001). To address these two main issues, more advanced analytical methods have been employed. In this article we will look at two of these more advanced analytical methods, machine learning algorithms and deep learning techniques, and discuss the effect that they have had on music and emotions research (Murthy, 2018). Current trends within MIR research, the application of support vector machines and neural networks, will also be assessed to explain how these methods help to address the two main issues within music and emotion research. Finally, future research within the field of machine and deep learning will be postulated to show how individuate models may be developed from a user or a pool of user's listening libraries. Also how developments of semi-supervised classification models that assess categorization by cluster instead of by nominal data, may be helpful in addressing the nuances of emotional categorization.
ContributorsMcgeehon, Timothy Makoto (Author) / Middleton, James (Thesis director) / Knowles, Kristina (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
Description
Due to increasing lack of resources and funding for budding student musicians, it is often not possible for this demographic to create, record, and produce their original music in the same high-budget studio environment in which music has been traditionally made. The objective of this project is to explore alternatives

Due to increasing lack of resources and funding for budding student musicians, it is often not possible for this demographic to create, record, and produce their original music in the same high-budget studio environment in which music has been traditionally made. The objective of this project is to explore alternatives which are more accessible to young independent musicians and reveal the most cost-efficient routes to obtain a high-quality result. To make this comparison, the group created budget recordings of their original music in a bedroom in true DIY fashion, and then recorded the same songs in a professional music studio using the best music and recording equipment available. The DIY recordings were mixed and mastered by the group members themselves, as well as separately by a professional audio engineer. The studio recordings were also mixed and mastered by a professional audio engineer, resulting in three final products with varying costs and quality. Ultimately, the group found that without mixing and mastering experience, it is very difficult to achieve high quality results. With the same budget recorded tracks, the group found that quality of the final product vastly increased when a professional audio engineer mixed and mastered the tracks. As far as the quality of the result, the studio recorded tracks were by far the best. Not only was the quality of the sounds from the high-end music and recording equipment much higher, the band had more freedom to be creative without the responsibility of simultaneously serving as recording engineers as was the case in the low budget recordings. The group concluded that this project was highly successful and demonstrated that high quality results could be obtained on a budget. The DIY recording techniques used in this project prove that independent musicians without access to expensive equipment and resources can still produce high quality music at the cost of more effort to serve as audio engineers in addition to musicians. However, recording in a studio with the help of a producer and professional audio engineers affords creative freedom and an increase in sound quality that is simply not possible to reproduce without the equipment and expertise that money can buy.
ContributorsBonk, Alan (Co-author) / Dhuyvetter, Nicholas Alan (Co-author) / Wickham, Kevin (Co-author) / Tobias, Evan (Thesis director) / Swoboda, Deanna (Committee member) / W.P. Carey School of Business (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
Description
The result of hundreds of hours of work is a few minutes of music. I am mechanical engineering student with a passion for music. The objective of this creative project was to learn as much as I could about music theory, composition, orchestration, notation, recording, and mixing, and to create

The result of hundreds of hours of work is a few minutes of music. I am mechanical engineering student with a passion for music. The objective of this creative project was to learn as much as I could about music theory, composition, orchestration, notation, recording, and mixing, and to create some music of my own. I learned a great deal in my two semesters of work. My music was focused on small ensembles of strings and piano. I created over ten hours of musical audio sketches and produced notation for four pieces for the piano and strings. The finished scores fit together with similar tones and textures, all sharing a minor tonality. The first piece, "Little Machine," is a simple, methodical piano piece created in the style of second species counterpoint. The second piece, "Searching" is a duet between a piano and a cello. For most of the piece, the two instruments share a rhythmic sense of mutual independence, yet neither part can exist without the either. "Something Lost" is a piano solo written with a variety of sections and a unifying idea that pervades through the piece. Finally, "3 Strings & Piano" is a melancholy adagio written for the piano, two cellos, and a double bass. Overall, this project has helped to prepare me for a lifetime of continued learning and composition. In the future I will continue to write music, and I hope to specifically learn more about the tools and techniques used by professionals in the industry so that I can find more efficient ways to produce my own music.
ContributorsSchichtel, Jacob (Author) / Stauffer, Sandra (Thesis director) / Tobias, Evan (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
135140-Thumbnail Image.png
Description
Concentrated Solar Power and Thermal Energy Storage are two technologies that are currently being explored as environmentally friendly methods of energy generation. The two technologies are often combined in an overall system to increase efficiency and reliability of the energy generation system. A collaborative group of researchers from Australia and

Concentrated Solar Power and Thermal Energy Storage are two technologies that are currently being explored as environmentally friendly methods of energy generation. The two technologies are often combined in an overall system to increase efficiency and reliability of the energy generation system. A collaborative group of researchers from Australia and the United States formed a project to design solar concentrators that utilize Concentrated Solar Power and Thermal Energy Storage. The collaborators from Arizona State designed a Latent Heat Thermal Energy Storage system for the project. It was initially proposed that the system utilize Dowtherm A as the Heat Transfer Fluid and a tin alloy as the storage material. Two thermal reservoirs were designed as part of the system; one reservoir was designed to be maintained at 240˚ C, while the other reservoir was designed to be maintained at 210˚ C. The tin was designed to receive heat from the hot reservoir during a charging cycle and discharge heat to the cold reservoir during a discharge cycle. From simulation, it was estimated that the system would complete a charging cycle in 17.5 minutes and a discharging cycle in 6.667 minutes [1]. After the initial design was fabricated and assembled, the system proved ineffective and did not perform as expected. Leaks occurred within the system under high pressure and the reservoirs could not be heated to the desired temperatures. After adding a flange to one of the reservoirs, it was decided that the system would be run with one reservoir, with water as the Heat Transfer Fluid. The storage material was changed to paraffin wax, because it would achieve phase change at a temperature lower than the boiling point of water. Since only one reservoir was available, charging cycle tests were performed on the system to gain insight on system performance. It was found that the paraffin sample only absorbs 3.29% of the available heat present during a charging cycle. This report discusses the tests performed on the system, the analysis of the data from these tests, the issues with the system that were revealed from the analyses, and potential design changes that would increase the efficiency of the system.
ContributorsKocher, Jordan Daniel (Author) / Wang, Robert (Thesis director) / Phelan, Patrick (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
Description
Craniofacial morphology in primates can vary on the basis of their diet because foods are often disparate in the amount and duration of force required to break them down. Therefore diet has the potential to exercise considerable selective pressure on the morphology of the masticatory system. The zygomatic arch

Craniofacial morphology in primates can vary on the basis of their diet because foods are often disparate in the amount and duration of force required to break them down. Therefore diet has the potential to exercise considerable selective pressure on the morphology of the masticatory system. The zygomatic arch is a known site of relatively high masticatory strain and yet the relationship between arch form and load type is relatively unknown in primates. While the relative position and robusticity of the arch is considered a key indicator of craniofacial adaptations to a mechanically challenging diet, and central to efforts to infer diet in past species, the relationships between morphology and diet type in this feature are not well established.

This study tested hypotheses using two diet categorizations: total consumption percent and food material properties (FMPs). The first hypothesis that cortical bone area (CA) and section moduli (bone strength) are positively correlated with masticatory loading tests whether CA and moduli measures were greatest anteriorly and decreased posteriorly along the arch. The results found these measures adhered to this predicted pattern in the majority of taxa. The second hypothesis examines sutural complexity in the zygomaticotemporal suture as a function of dietary loading differences by calculating fractal dimensions as indices of complexity. No predictable pattern was found linking sutural complexity and diet in this primate sample, though hard object consumers possessed the most complex sutures. Lastly, cross-sectional geometric properties were measured to investigate whether bending and torsional resistance and cross-sectional shape are related to differences in masticatory loading. The highest measures of mechanical resistance tracked with areas of greatest strain in the majority of taxa. Cross-sectional shape differences do appear to reflect dietary differences. FMPs were not correlated with cross-sectional variables, however pairwise comparisons suggest taxa that ingest foods of greater stiffness experience relatively larger measures of bending and torsional resistance. The current study reveals that internal and external morphological factors vary across the arch and in conjunction with diet in primates. These findings underscore the importance of incorporating these mechanical differences in models of zygomatic arch mechanical behavior and primate craniofacial biomechanics.
ContributorsEdmonds, Hallie Margaret (Author) / Reed, Kaye (Thesis advisor) / Schwartz, Gary (Committee member) / Vinyard, Chris (Committee member) / Arizona State University (Publisher)
Created2017
135275-Thumbnail Image.png
Description
In real world applications, materials undergo a simultaneous combination of tension, compression, and torsion as a result of high velocity impact. The split Hopkinson pressure bar (SHPB) is an effective tool for analyzing stress-strain response of materials at high strain rates but currently little can be done to produce a

In real world applications, materials undergo a simultaneous combination of tension, compression, and torsion as a result of high velocity impact. The split Hopkinson pressure bar (SHPB) is an effective tool for analyzing stress-strain response of materials at high strain rates but currently little can be done to produce a synchronized combination of these varying impacts. This research focuses on fabricating a flange which will be mounted on the incident bar of a SHPB and struck perpendicularly by a pneumatically driven striker thus allowing for torsion without interfering with the simultaneous compression or tension. Analytical calculations are done to determine size specifications of the flange to protect against yielding or failure. Based on these results and other design considerations, the flange and a complementary incident bar are created. Timing can then be established such that the waves impact the specimen at the same time causing simultaneous loading of a specimen. This thesis allows research at Arizona State University to individually incorporate all uniaxial deformation modes (tension, compression, and torsion) at high strain rates as well as combining either of the first two modes with torsion. Introduction of torsion will expand the testing capabilities of the SHPB at ASU and allow for more in depth analysis of the mechanical behavior of materials under impact loading. Combining torsion with tension or compression will promote analysis of a material's adherence to the Von Mises failure criterion. This greater understanding of material behavior can be implemented into models and simulations thereby improving the accuracy with which engineers can design new structures.
ContributorsVotroubek, Edward Daniel (Author) / Solanki, Kiran (Thesis director) / Oswald, Jay (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
Description

This creative project focused on the process of making an album from scratch. From songwriting to recording, this three-year project ended with the release of a ten-song album available on all streaming platforms. The goal of this project was to experience the same general process as professional recording artists and

This creative project focused on the process of making an album from scratch. From songwriting to recording, this three-year project ended with the release of a ten-song album available on all streaming platforms. The goal of this project was to experience the same general process as professional recording artists and gain a better understanding of the music industry.

ContributorsStone, Amanda (Author) / Myers, Nathan (Thesis director) / Steiner, Kiernan (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / School of Music, Dance and Theatre (Contributor)
Created2023-05
ContributorsStone, Amanda (Author) / Myers, Nathan (Thesis director) / Steiner, Kiernan (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / School of Music, Dance and Theatre (Contributor)
Created2023-05
ContributorsStone, Amanda (Author) / Myers, Nathan (Thesis director) / Steiner, Kiernan (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / School of Music, Dance and Theatre (Contributor)
Created2023-05
Description
This creative project focused on the process of making an album from scratch. From songwriting to recording, this three-year project ended with the release of a ten-song album available on all streaming platforms. The goal of this project was to experience the same general process as professional recording artists and

This creative project focused on the process of making an album from scratch. From songwriting to recording, this three-year project ended with the release of a ten-song album available on all streaming platforms. The goal of this project was to experience the same general process as professional recording artists and gain a better understanding of the music industry.
ContributorsStone, Amanda (Author) / Myers, Nathan (Thesis director) / Steiner, Kiernan (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / School of Music, Dance and Theatre (Contributor)
Created2023-05