Matching Items (3)
Filtering by

Clear all filters

156743-Thumbnail Image.png
Description
Measurements of the response of superconducting nanowire single photon detector (SNSPD) devices to changes in various forms of input power can be used for characterization of the devices and for probing device-level physics. Two niobium nitride (NbN) superconducting nanowires developed for use as SNSPD devices are embedded as the inductive

Measurements of the response of superconducting nanowire single photon detector (SNSPD) devices to changes in various forms of input power can be used for characterization of the devices and for probing device-level physics. Two niobium nitride (NbN) superconducting nanowires developed for use as SNSPD devices are embedded as the inductive (L) component in resonant inductor/capacitor (LC) circuits coupled to a microwave transmission line. The capacitors are low loss commercial chip capacitors which limit the internal quality factor of the resonators to approximately $Qi = 170$. The resonator quality factor, approximately $Qr = 23$, is dominated by the coupling to the feedline and limits the detection bandwidth to on the order of 1MHz. In our experiments with this first generation device, we measure the response of the SNSPD devices to changes in thermal and optical power in both the time domain and the frequency domain. Additionally, we explore the non-linear response of the devices to an applied bias current. For these nanowires, we find that the band-gap energy is $\Delta_0 \approx 1.1$meV and that the density of states at the Fermi energy is $N_0 \sim 10^{10}$/eV/$\mu$m$^3$.

We present the results of experimentation with a superconducting nanowire that can be operated in two detection modes: i) as a kinetic inductance detector (KID) or ii) as a single photon detector (SPD). When operated as a KID mode in linear mode, the detectors are AC-biased with tones at their resonant frequencies of 45.85 and 91.81MHz. When operated as an SPD in Geiger mode, the resonators are DC biased through cryogenic bias tees and each photon produces a sharp voltage step followed by a ringdown signal at the resonant frequency of the detector. We show that a high AC bias in KID mode is inferior for photon counting experiments compared to operation in a DC-biased SPD mode due to the small fraction of time spent near the critical current with an AC bias. We find a photon count rate of $\Gamma_{KID} = 150~$photons/s/mA in a critically biased KID mode and a photon count rate of $\Gamma_{SPD} = 10^6~$photons/s/mA in SPD mode.

This dissertation additionally presents simulations of a DC-biased, frequency-multiplexed readout of SNSPD devices in Advanced Design System (ADS), LTspice, and Sonnet. A multiplexing factor of 100 is achievable with a total count rate of $>5$MHz. This readout could enable a 10000-pixel array for astronomy or quantum communications. Finally, we present a prototype array design based on lumped element components. An early implementation of the array is presented with 16 pixels in the frequency range of 74.9 to 161MHz. We find good agreement between simulation and experimental data in both the time domain and the frequency domain and present modifications for future versions of the array.
ContributorsSchroeder, Edward, Ph.D (Author) / Mauskopf, Philip (Thesis advisor) / Chamberlin, Ralph (Committee member) / Lindsay, Stuart (Committee member) / Newman, Nathan (Committee member) / Easson, Damien (Committee member) / Arizona State University (Publisher)
Created2018
136862-Thumbnail Image.png
DescriptionThere is a growing market for lightweight firearm barrels. Currently this market is dominated by Aluminum and Carbon fiber barrels, however, Gunwright, LLC proposes an innovative new way to manufacture Titanium firearm barrels. This report offers insight into potential customers and existing competitors.
ContributorsKeberle, Katelyn Frances (Author) / Adams, Jim (Thesis director) / Newman, Nathan (Committee member) / Barrett, The Honors College (Contributor) / Materials Science and Engineering Program (Contributor)
Created2014-05
155178-Thumbnail Image.png
Description
The coexistence of superconductivity and ferromagnetic orders has been the subject of study for many years. It well known that these materials possess two competing order parameters; however the two order parameters can coexist under special circumstances inducing interesting physical phenomena. In recent years the demand of ultra-low-power, high density

The coexistence of superconductivity and ferromagnetic orders has been the subject of study for many years. It well known that these materials possess two competing order parameters; however the two order parameters can coexist under special circumstances inducing interesting physical phenomena. In recent years the demand of ultra-low-power, high density cryogenic memories has brought considerable interest to integrate superconducting and magnetic thin films in one structure to produce novel memory elements. The operation of the device depends on the unusual electronic properties associated with the Superconductor (S) /Ferromagnetic (F) proximity effect.

Niobium (Nb) based Josephson junction devices were fabricated with barriers containing two ferromagnetic layers separated by a normal metal space layer. In device operation, electrons in the superconductor are injected into the ferromagnets, causing the superconductor wavefunction to shift its phase and decay in amplitude. Such devices have two different states that depend on the relative magnetization of their ferromagnetic barrier layers, parallel or antiparallel. In these different states, the junctions have different phase shifts and critical currents. Superconducting circuits containing these devices can be designed to operate as memory cells using either one of these outputs.

To quantify the shift in phase and amplitude decay of the wavefunction through a common ferromagnet, permalloy, a series of Nb/permalloy/Nb Josephson junctions with varying ferromagnetic layer thicknesses were fabricated. Data have shown that the optimal thickness of a fixed layer composed of permalloy is 2.4 nm, as it shifts the wavefunction phase to π/2, its “pivot point.” If set to precisely this value, the free layer in SFNF'S junctions will switch the junction into either the 0 or π state depending on its magnetic orientation. To minimize the free-layer switching energy dilute Cu-permalloy alloy [Cu0.7(Ni80Fe20)0.3] with a low magnetic saturation (Ms of ~80 emu/cm3) was used as the free layer. These devices exhibit switching energies at small magnetic fields, demonstrating their potential use for low power non-volatile memory for superconductor circuits.

Lastly, to study the proximity effect using other potentially-useful ferromagnetic layers, measurements were performed on Nb/F bilayers and Nb/F/AlOx/Al tunnel junctions with ferromagnets Ni8Fe19, Ni65Fe15Co20, and Pd1-xNix. The dependence of the critical temperature of the bilayers and density of states that propagated through the ferromagnetic layer were studied as a function of thickness. From this study, crucial magnetic and electrical parameters like magnetic coherence lengths (ξF), exchange energy (Eex), and the rate of shift in the wavefunction’s phase and amplitude as a function of thickness were determined.
ContributorsAbd El Qader, Makram (Author) / Newman, Nathan (Thesis advisor) / Rowell, John (Committee member) / Rizzo, Nick (Committee member) / Yu, Hongbin (Committee member) / Arizona State University (Publisher)
Created2016