Matching Items (4)
Filtering by

Clear all filters

152361-Thumbnail Image.png
Description
The study of acoustic ecology is concerned with the manner in which life interacts with its environment as mediated through sound. As such, a central focus is that of the soundscape: the acoustic environment as perceived by a listener. This dissertation examines the application of several computational tools in the

The study of acoustic ecology is concerned with the manner in which life interacts with its environment as mediated through sound. As such, a central focus is that of the soundscape: the acoustic environment as perceived by a listener. This dissertation examines the application of several computational tools in the realms of digital signal processing, multimedia information retrieval, and computer music synthesis to the analysis of the soundscape. Namely, these tools include a) an open source software library, Sirens, which can be used for the segmentation of long environmental field recordings into individual sonic events and compare these events in terms of acoustic content, b) a graph-based retrieval system that can use these measures of acoustic similarity and measures of semantic similarity using the lexical database WordNet to perform both text-based retrieval and automatic annotation of environmental sounds, and c) new techniques for the dynamic, realtime parametric morphing of multiple field recordings, informed by the geographic paths along which they were recorded.
ContributorsMechtley, Brandon Michael (Author) / Spanias, Andreas S (Thesis advisor) / Sundaram, Hari (Thesis advisor) / Cook, Perry R. (Committee member) / Li, Baoxin (Committee member) / Arizona State University (Publisher)
Created2013
151722-Thumbnail Image.png
Description
Digital sound synthesis allows the creation of a great variety of sounds. Focusing on interesting or ecologically valid sounds for music, simulation, aesthetics, or other purposes limits the otherwise vast digital audio palette. Tools for creating such sounds vary from arbitrary methods of altering recordings to precise simulations of vibrating

Digital sound synthesis allows the creation of a great variety of sounds. Focusing on interesting or ecologically valid sounds for music, simulation, aesthetics, or other purposes limits the otherwise vast digital audio palette. Tools for creating such sounds vary from arbitrary methods of altering recordings to precise simulations of vibrating objects. In this work, methods of sound synthesis by re-sonification are considered. Re-sonification, herein, refers to the general process of analyzing, possibly transforming, and resynthesizing or reusing recorded sounds in meaningful ways, to convey information. Applied to soundscapes, re-sonification is presented as a means of conveying activity within an environment. Applied to the sounds of objects, this work examines modeling the perception of objects as well as their physical properties and the ability to simulate interactive events with such objects. To create soundscapes to re-sonify geographic environments, a method of automated soundscape design is presented. Using recorded sounds that are classified based on acoustic, social, semantic, and geographic information, this method produces stochastically generated soundscapes to re-sonify selected geographic areas. Drawing on prior knowledge, local sounds and those deemed similar comprise a locale's soundscape. In the context of re-sonifying events, this work examines processes for modeling and estimating the excitations of sounding objects. These include plucking, striking, rubbing, and any interaction that imparts energy into a system, affecting the resultant sound. A method of estimating a linear system's input, constrained to a signal-subspace, is presented and applied toward improving the estimation of percussive excitations for re-sonification. To work toward robust recording-based modeling and re-sonification of objects, new implementations of banded waveguide (BWG) models are proposed for object modeling and sound synthesis. Previous implementations of BWGs use arbitrary model parameters and may produce a range of simulations that do not match digital waveguide or modal models of the same design. Subject to linear excitations, some models proposed here behave identically to other equivalently designed physical models. Under nonlinear interactions, such as bowing, many of the proposed implementations exhibit improvements in the attack characteristics of synthesized sounds.
ContributorsFink, Alex M (Author) / Spanias, Andreas S (Thesis advisor) / Cook, Perry R. (Committee member) / Turaga, Pavan (Committee member) / Tsakalis, Konstantinos (Committee member) / Arizona State University (Publisher)
Created2013
155059-Thumbnail Image.png
Description
The tradition of building musical robots and automata is thousands of years old. Despite this rich history, even today musical robots do not play with as much nuance and subtlety as human musicians. In particular, most instruments allow the player to manipulate timbre while playing; if a violinist is told

The tradition of building musical robots and automata is thousands of years old. Despite this rich history, even today musical robots do not play with as much nuance and subtlety as human musicians. In particular, most instruments allow the player to manipulate timbre while playing; if a violinist is told to sustain an E, they will select which string to play it on, how much bow pressure and velocity to use, whether to use the entire bow or only the portion near the tip or the frog, how close to the bridge or fingerboard to contact the string, whether or not to use a mute, and so forth. Each one of these choices affects the resulting timbre, and navigating this timbre space is part of the art of playing the instrument. Nonetheless, this type of timbral nuance has been largely ignored in the design of musical robots. Therefore, this dissertation introduces a suite of techniques that deal with timbral nuance in musical robots. Chapter 1 provides the motivating ideas and introduces Kiki, a robot designed by the author to explore timbral nuance. Chapter 2 provides a long history of musical robots, establishing the under-researched nature of timbral nuance. Chapter 3 is a comprehensive treatment of dynamic timbre production in percussion robots and, using Kiki as a case-study, provides a variety of techniques for designing striking mechanisms that produce a range of timbres similar to those produced by human players. Chapter 4 introduces a machine-learning algorithm for recognizing timbres, so that a robot can transcribe timbres played by a human during live performance. Chapter 5 introduces a technique that allows a robot to learn how to produce isolated instances of particular timbres by listening to a human play an examples of those timbres. The 6th and final chapter introduces a method that allows a robot to learn the musical context of different timbres; this is done in realtime during interactive improvisation between a human and robot, wherein the robot builds a statistical model of which timbres the human plays in which contexts, and uses this to inform its own playing.
ContributorsKrzyzaniak, Michael Joseph (Author) / Coleman, Grisha (Thesis advisor) / Turaga, Pavan (Committee member) / Artemiadis, Panagiotis (Committee member) / Arizona State University (Publisher)
Created2016
155551-Thumbnail Image.png
Description
When dancers are granted agency over music, as in interactive dance systems, the actors are most often concerned with the problem of creating a staged performance for an audience. However, as is reflected by the above quote, the practice of Argentine tango social dance is most concerned with participants internal

When dancers are granted agency over music, as in interactive dance systems, the actors are most often concerned with the problem of creating a staged performance for an audience. However, as is reflected by the above quote, the practice of Argentine tango social dance is most concerned with participants internal experience and their relationship to the broader tango community. In this dissertation I explore creative approaches to enrich the sense of connection, that is, the experience of oneness with a partner and complete immersion in music and dance for Argentine tango dancers by providing agency over musical activities through the use of interactive technology. Specifically, I create an interactive dance system that allows tango dancers to affect and create music via their movements in the context of social dance. The motivations for this work are multifold: 1) to intensify embodied experience of the interplay between dance and music, individual and partner, couple and community, 2) to create shared experience of the conventions of tango dance, and 3) to innovate Argentine tango social dance practice for the purposes of education and increasing musicality in dancers.
ContributorsBrown, Courtney Douglass (Author) / Paine, Garth (Thesis advisor) / Feisst, Sabine (Committee member) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2017