Matching Items (11)
135321-Thumbnail Image.png
Description
The purpose of this study is to analyze the stereotypes surrounding four wind instruments (flutes, oboes, clarinets, and saxophones), and the ways in which those stereotypes propagate through various levels of musical professionalism in Western culture. In order to determine what these stereotypes might entail, several thousand social media and

The purpose of this study is to analyze the stereotypes surrounding four wind instruments (flutes, oboes, clarinets, and saxophones), and the ways in which those stereotypes propagate through various levels of musical professionalism in Western culture. In order to determine what these stereotypes might entail, several thousand social media and blog posts were analyzed, and direct quotations detailing the perceived stereotypical personality profiles for each of the four instruments were collected. From these, the three most commonly mentioned characteristics were isolated for each of the instrument groups as follows: female gender, femininity, and giggliness for flutists, intelligence, studiousness, and demographics (specifically being an Asian male) for clarinetists, quirkiness, eccentricity, and being seen as a misfit for oboists, and overconfidence, attention-seeking behavior, and coolness for saxophonists. From these traits, a survey was drafted which asked participating college-aged musicians various multiple choice, opinion scale, and short-answer questions that gathered how much they agree or disagree with each trait describing the instrument from which it was derived. Their responses were then analyzed to determine how much correlation existed between the researched characteristics and the opinions of modern musicians. From these results, it was determined that 75% of the traits that were isolated for a particular instrument were, in fact, recognized as being true in the survey data, demonstrating that the stereotypes do exist and seem to be widely recognizable across many age groups, locations, and levels of musical skill. Further, 89% of participants admitted that the instrument they play has a certain stereotype associated with it, but only 38% of people identify with that profile. Overall, it was concluded that stereotypes, which are overwhelmingly negative and gendered by nature, are indeed propagated, but musicians do not appear to want to identify with them, and they reflect a more archaic and immature sense that does not correlate to the trends observed in modern, professional music.
ContributorsAllison, Lauren Nicole (Author) / Bhattacharjya, Nilanjana (Thesis director) / Ankeny, Casey (Committee member) / School of Life Sciences (Contributor) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136814-Thumbnail Image.png
Description
The goal of this project was to explore biomimetics by creating a jellyfish flying device that uses propulsion of air to levitate while utilizing electromyography signals and infrared signals as mechanisms to control the device. Completing this project would require knowledge of biological signals, electrical circuits, computer programming, and physics

The goal of this project was to explore biomimetics by creating a jellyfish flying device that uses propulsion of air to levitate while utilizing electromyography signals and infrared signals as mechanisms to control the device. Completing this project would require knowledge of biological signals, electrical circuits, computer programming, and physics to accomplish. An EMG sensor was used to obtain processed electrical signals produced from the muscles in the forearm and was then utilized to control the actuation speed of the tentacles. An Arduino microprocessor was used to translate the EMG signals to infrared blinking sequences which would propagate commands through a constructed circuit shield to the infrared receiver on jellyfish. The receiver will then translate the received IR sequence into actions. Then the flying device must produce enough thrust to propel the body upwards. The application of biomimetics would best test my skills as an engineer as well as provide a method of applying what I have learned over the duration of my undergraduate career.
ContributorsTsui, Jessica W (Author) / Muthuswamy, Jitteran (Thesis director) / Blain Christen, Jennifer (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
136104-Thumbnail Image.png
Description
A specific type of Congenital Heart Defect (CHD) known as Coarctation (narrowing) of the Aorta (CoA) prevails in 10% of all CHD patients resulting in life-threatening conditions. Treatments involve limited medical therapy (i.e PGE1 therapy), but in majority of CoA cases, planned surgical treatments are very common. The surgical approach

A specific type of Congenital Heart Defect (CHD) known as Coarctation (narrowing) of the Aorta (CoA) prevails in 10% of all CHD patients resulting in life-threatening conditions. Treatments involve limited medical therapy (i.e PGE1 therapy), but in majority of CoA cases, planned surgical treatments are very common. The surgical approach is dictated by the severity of the coarctation, by which the method of treatments is divided between minimally invasive and extensive invasive procedures. Modern diagnostic procedures allude to many disadvantages making it difficult for clinical practices to properly deliver an optimal form of care. Computational Fluid Dynamics (CFD) technique addresses these issues by providing new forms of diagnostic measures that is non-invasive, inexpensive, and more accurate compared to other evaluative devices. To explore further using the CFD based alternative diagnostic measure, this project aims to validate CFD techniques through in vitro studies that capture the fluid flow in anatomically accurate aortic structures. These studies combine particle image velocimetry and catheterization experimental techniques in order to provide a significant knowledge towards validation of fluid flow simulations.
ContributorsPathangey, Girish (Co-author) / Matheny, Chris (Co-author) / Frakes, David (Thesis director) / Pophal, Stephen (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2015-05
133734-Thumbnail Image.png
Description
Prior expectations can bias evaluative judgments of sensory information. We show that information about a performer's status can bias the evaluation of musical stimuli, reflected by differential activity of the ventromedial prefrontal cortex (vmPFC). Moreover, we demonstrate that decreased susceptibility to this confirmation bias is (a) accompanied by the recruitment

Prior expectations can bias evaluative judgments of sensory information. We show that information about a performer's status can bias the evaluation of musical stimuli, reflected by differential activity of the ventromedial prefrontal cortex (vmPFC). Moreover, we demonstrate that decreased susceptibility to this confirmation bias is (a) accompanied by the recruitment of and (b) correlated with the white-matter structure of the executive control network, particularly related to the dorsolateral prefrontal cortex (dlPFC). By using long-duration musical stimuli, we were able to track the initial biasing, subsequent perception, and ultimate evaluation of the stimuli, examining the full evolution of these biases over time. Our findings confirm the persistence of confirmation bias effects even when ample opportunity exists to gather information about true stimulus quality, and underline the importance of executive control in reducing bias.
ContributorsAydogan, Goekhan (Co-author, Committee member) / Flaig, Nicole (Co-author) / Larg, Edward W. (Co-author) / Margulis, Elizabeth Hellmuth (Co-author) / McClure, Samuel (Co-author, Thesis director) / Nagishetty Ravi, Srekar Krishna (Co-author) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
137283-Thumbnail Image.png
Description
Electroencephalogram (EEG) used simultaneously with video monitoring can record detailed patient physiology during a seizure to aid diagnosis. However, current patient monitoring systems typically require a patient to stay in view of a fixed camera limiting their freedom of movement. The goal of this project is to design an automatic

Electroencephalogram (EEG) used simultaneously with video monitoring can record detailed patient physiology during a seizure to aid diagnosis. However, current patient monitoring systems typically require a patient to stay in view of a fixed camera limiting their freedom of movement. The goal of this project is to design an automatic patient monitoring system with software to track patient movement in order to increase a patient's mobility. This report discusses the impact of an automatic patient monitoring system and the design steps used to create and test a functional prototype.
ContributorsBui, Robert Truong (Author) / Frakes, David (Thesis director) / Helms Tillery, Stephen (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2014-05
Description
Biofeedback music is the integration of physiological signals with audible sound for aesthetic considerations, which an individual’s mental status corresponds to musical output. This project looks into how sounds can be drawn from the meditative and attentive states of the brain using the MindWave Mobile EEG biosensor from NeuroSky. With

Biofeedback music is the integration of physiological signals with audible sound for aesthetic considerations, which an individual’s mental status corresponds to musical output. This project looks into how sounds can be drawn from the meditative and attentive states of the brain using the MindWave Mobile EEG biosensor from NeuroSky. With the MindWave and an Arduino microcontroller processor, sonic output is attained by inputting the data collected by the MindWave, and in real time, outputting code that deciphers it into user constructed sound output. The input is scaled from values 0 to 100, measuring the ‘attentive’ state of the mind by observing alpha waves, and distributing this information to the microcontroller. The output of sound comes from sourcing this into the Musical Instrument Shield and varying the musical tonality with different chords and delay of the notes. The manipulation of alpha states highlights the control or lack thereof for the performer and touches on the question of how much control over the output there really is, much like the experimentalist Alvin Lucier displayed with his concepts in brainwave music.
ContributorsQuach, Andrew Duc (Author) / Helms Tillery, Stephen (Thesis director) / Feisst, Sabine (Committee member) / Barrett, The Honors College (Contributor) / Herberger Institute for Design and the Arts (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
135721-Thumbnail Image.png
Description
Military personnel are affected by muscle fatigue during the various missions and training regimens for their work. Muscle fatigue is caused by the overuse and lack of nutrients to muscles. When a soldier is fatigued, they are unable to perform at their maximum potential and are also more susceptible to

Military personnel are affected by muscle fatigue during the various missions and training regimens for their work. Muscle fatigue is caused by the overuse and lack of nutrients to muscles. When a soldier is fatigued, they are unable to perform at their maximum potential and are also more susceptible to injury. For military personnel to save time and money as well as become more efficient within the missions they deploy soldiers, muscle fatigue should be predicted. Predicting fatigue will allow for a reduced rate of negative exercise-related impacts. This means that soldiers will be able to avoid potential life threatening situations they encounter due to the muscle fatigue. The newest technology in wearable devices includes clothing that incorporates heart rate monitors, breathing rate and breathing depth sensors, and a database that converts this information into the amount of calories burned during a workout. Fatigue can be tracked and predicted in the military using wearable clothing with activity sensors, preventing further injury to the soldiers and optimizing performance output at all times. For military personnel, the ability to predict fatigue using this technology would be beneficial to the soldiers and the military as a whole.
ContributorsFalk, Brady Thomas (Author) / Lockhart, Thurmon (Thesis director) / Williams, Deborah (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135506-Thumbnail Image.png
Description
Traumatic brain injury (TBI) is a leading cause of death in individuals under the age of 45, resulting in over 50,000 deaths each year. Over 80,000 TBI patients report long-term deficits consisting of motor or cognitive dysfunctions due to TBI pathophysiology. The biochemical secondary injury triggers a harmful inflammatory cascade,

Traumatic brain injury (TBI) is a leading cause of death in individuals under the age of 45, resulting in over 50,000 deaths each year. Over 80,000 TBI patients report long-term deficits consisting of motor or cognitive dysfunctions due to TBI pathophysiology. The biochemical secondary injury triggers a harmful inflammatory cascade, gliosis, and astrocyte activation surrounding the injury lesion, and no current treatments exist to alleviate these underlying pathologies. In order to mitigate the negative inflammatory effects of the secondary injury, we created a hydrogel comprised of hyaluronic acid (HA) and laminin, and we hypothesized that the anti-inflammatory properties of HA will decrease astrocyte activation and inflammation after TBI. C57/BL6 mice were subjected to mild-to-moderate CCI. Three days following injury, mice were treated with injection of vehicle or HA-Laminin hydrogel. Mice were sacrificed at three and seven days post injection and analyzed for astrocyte and inflammatory responses. In mice treated with vehicle injections, astrocyte activation was significantly increased at three days post-transplantation in the injured cortex and injury lesion. However, mice treated with the HA-Laminin hydrogel experienced significantly reduced acute astrocyte activation at the injury site three days post transplantation. Interestingly, there were no significant differences in astrocyte activation at seven days post treatment in either group. Although the microglial and macrophage response remains to be investigated, our data suggest that the HA-Laminin hydrogel demonstrates potential for TBI therapeutics targeting inflammation, including acute modulation of the astrocyte, microglia, and macrophage response to TBI.
ContributorsGoddery, Emma Nicole (Author) / Stabenfeldt, Sarah (Thesis director) / Addington, Caroline (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
148383-Thumbnail Image.png
Description

The distinctions between the neural resources supporting speech and music comprehension have long been studied using contexts like aphasia and amusia, and neuroimaging in control subjects. While many models have emerged to describe the different networks uniquely recruited in response to speech and music stimuli, there are still many questions,

The distinctions between the neural resources supporting speech and music comprehension have long been studied using contexts like aphasia and amusia, and neuroimaging in control subjects. While many models have emerged to describe the different networks uniquely recruited in response to speech and music stimuli, there are still many questions, especially regarding left-hemispheric strokes that disrupt typical speech-processing brain networks, and how musical training might affect the brain networks recruited for speech after a stroke. Thus, our study aims to explore some questions related to the above topics. We collected task-based functional MRI data from 12 subjects who previously experienced a left-hemispheric stroke. Subjects listened to blocks of spoken sentences and novel piano melodies during scanning to examine the differences in brain activations in response to speech and music. We hypothesized that speech stimuli would activate right frontal regions, and music stimuli would activate the right superior temporal regions more than speech (both findings not seen in previous studies of control subjects), as a result of functional changes in the brain, following the left-hemispheric stroke and particularly the loss of functionality in the left temporal lobe. We also hypothesized that the music stimuli would cause a stronger activation in right temporal cortex for participants who have had musical training than those who have not. Our results indicate that speech stimuli compared to rest activated the anterior superior temporal gyrus bilaterally and activated the right inferior frontal lobe. Music stimuli compared to rest did not activate the brain bilaterally, but rather only activated the right middle temporal gyrus. When the group analysis was performed with music experience as a covariate, we found that musical training did not affect activations to music stimuli specifically, but there was greater right hemisphere activation in several regions in response to speech stimuli as a function of more years of musical training. The results of the study agree with our hypotheses regarding the functional changes in the brain, but they conflict with our hypothesis about musical expertise. Overall, the study has generated interesting starting points for further explorations of how musical neural resources may be recruited for speech processing after damage to typical language networks.

ContributorsKarthigeyan, Vishnu R (Author) / Rogalsky, Corianne (Thesis director) / Daliri, Ayoub (Committee member) / Harrington Bioengineering Program (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
158833-Thumbnail Image.png
Description
Transcranial focused ultrasound (tFUS) is a unique neurostimulation modality with potential to develop into a highly sophisticated and effective tool. Unlike any other noninvasive neurostimulation technique, tFUS has a high spatial resolution (on the order of millimeters) and can penetrate across the skull, deep into the brain. Sub-thermal tFUS has

Transcranial focused ultrasound (tFUS) is a unique neurostimulation modality with potential to develop into a highly sophisticated and effective tool. Unlike any other noninvasive neurostimulation technique, tFUS has a high spatial resolution (on the order of millimeters) and can penetrate across the skull, deep into the brain. Sub-thermal tFUS has been shown to induce changes in EEG and fMRI, as well as perception and mood. This study investigates the possibility of using tFUS to modulate brain networks involved in attention and cognitive control.Three different brain areas linked to saliency, cognitive control, and emotion within the cingulo-opercular network were stimulated with tFUS while subjects performed behavioral paradigms. The first study targeted the dorsal anterior cingulate cortex (dACC), which is associated with performance on cognitive attention tasks, conflict, error, and, emotion. Subjects performed a variant of the Erikson Flanker task in which emotional faces (fear, neutral or scrambled) were displayed in the background as distractors. tFUS significantly reduced the reaction time (RT) delay induced by faces; there were significant differences between tFUS and Sham groups in event related potentials (ERP), event related spectral perturbation (ERSP), conflict and error processing, and heart rate variability (HRV).
The second study used the same behavioral paradigm, but targeted tFUS to the right anterior insula/frontal operculum (aIns/fO). The aIns/fO is implicated in saliency, cognitive control, interoceptive awareness, autonomic function, and emotion. tFUS was found to significantly alter ERP, ERSP, conflict and error processing, and HRV responses.
The third study targeted tFUS to the right inferior frontal gyrus (rIFG), employing the Stop Signal task to study inhibition. tFUS affected ERPs and improved stopping speed. Using network modeling, causal evidence is presented for rIFG influence on subcortical nodes in stopping.
This work provides preliminarily evidence that tFUS can be used to modulate broader network function through a single node, affecting neurophysiological processing, physiologic responses, and behavioral performance. Additionally it can be used as a tool to elucidate network function. These studies suggest tFUS has the potential to affect cognitive function as a clinical tool, and perhaps even enhance wellbeing and expand conscious awareness.
ContributorsFini, Maria Elizabeth (Author) / Tyler, William J (Thesis advisor) / Greger, Bradley (Committee member) / Santello, Marco (Committee member) / Kleim, Jeffrey (Committee member) / Helms Tillery, Stephen (Committee member) / Arizona State University (Publisher)
Created2020