Matching Items (19)
Filtering by

Clear all filters

Description
Labyrinths is my Capstone/Honors Creative Project, blending my proclivity for music composition and the inspiring stories of Jorge Luis Borges. Originally, the project was outlined as a collection of five to eight songs named for and based on stories in Borges' collection Labyrinths, to be written, recorded, and performed by

Labyrinths is my Capstone/Honors Creative Project, blending my proclivity for music composition and the inspiring stories of Jorge Luis Borges. Originally, the project was outlined as a collection of five to eight songs named for and based on stories in Borges' collection Labyrinths, to be written, recorded, and performed by me. Over time other aspects were included, making me a director of a large-scale creative project which now included three other musicians and two artists. In this paper, I give a brief overview of Borges' life and the context surrounding his collection Labyrinths, an in-depth description of the project as a whole, liner notes for each song, credits, and three appendices. The liner notes are broken into four sections: a summary of the story, an analysis of the story and my interpretation of it (including my musical ideas for the resulting song), an effects list, and performance notes which include the text I read from each story in the performance and recordings. The first appendix is a collection of the sheet music scores for each song and the text document I used for the performance readings. The second appendix shows the art I was given permission to use, and how I modified them for my thesis. The third appendix contains my primary sources, secondary sources/suggested readings, and suggested websites and videos. Attached are the recordings of each song I made in Logic Pro 9, a video of the live performance, and an unedited audio recording of the same performance.
ContributorsVidean, Matthew Cutter (Author) / Stauffer, Sandra (Thesis director) / Feisst, Sabine (Committee member) / Downey, Ryan (Committee member) / Barrett, The Honors College (Contributor) / Herberger Institute for Design and the Arts (Contributor) / School of International Letters and Cultures (Contributor)
Created2014-12
Description
Only in the world of acting can an individual be denied a job simply on the basis of their appearance, and in my thesis, I sought to explore alternatives to this through the concept of nontraditional casting and casting against "type", which included the presentation of a full-length production of

Only in the world of acting can an individual be denied a job simply on the basis of their appearance, and in my thesis, I sought to explore alternatives to this through the concept of nontraditional casting and casting against "type", which included the presentation of a full-length production of the musical "Once on this Island" which I attempted to cast based on vocal quality and skill alone rather than taking physical characteristics into account. I researched the history and implementation of nontraditional casting, both in regards to race and other factors such as gender, socio-economic status, and disability. I also considered the legal and intellectual property challenges that nontraditional casting can pose. I concluded from this research that while nontraditional casting is only one solution to the problem, it still has a great deal of potential to create diversity in theater. For my own show, I held the initial auditions via audio recording, though the callback auditions were held in person so that I and my crew could appraise dance and acting ability. Though there were many challenges with our cast after this initial round of auditions, we were able to solidify our cast and continue through the rehearsal process. All things said, the show was very successful. It is my hope that those who were a part of the show, either as part of the production or the audience, are inspired to challenge the concept of typecasting in contemporary theater.
ContributorsBriggs, Timothy James (Author) / Yatso, Toby (Thesis director) / Dreyfoos, Dale (Committee member) / Barrett, The Honors College (Contributor) / School of Music (Contributor)
Created2014-12
132483-Thumbnail Image.png
Description
White-nose syndrome (WNS) is a fungal infection devastating bat populations throughout eastern North America. WNS is caused by a fungus, Pseudogymnoascus destructans (Pd), that invades the skin of hibernating bats. While there are a number of treatments being researched, there is currently no effective treatment for WNS that is deployed

White-nose syndrome (WNS) is a fungal infection devastating bat populations throughout eastern North America. WNS is caused by a fungus, Pseudogymnoascus destructans (Pd), that invades the skin of hibernating bats. While there are a number of treatments being researched, there is currently no effective treatment for WNS that is deployed in the field, except a few being tested on a limited scale. Bats have lowered immune function and response during hibernation, which may increase susceptibility to infection during the winter months. Antimicrobial peptides (AMPs) are a crucial component of the innate immune system and serve as barriers against infection. AMPs are constitutively expressed on skin and facilitate wound healing, stimulate other immune responses, and may also stay active on bat skin during hibernation. AMPs are expressed by all tissues, have direct killing abilities against microbes, and are a potential treatment for bats infected with Pd. In this investigation, the fungicidal activity of several readily available commercial AMPs were compared, and killing assay protocols previously investigated by Frasier and Lake were replicated to establish a control trial for use in future killing assays. Another aim of this investigation was to synthesize a bat-derived AMP for use in the killing assay. Sequences of bat-derived AMPs have been identified in bat skin samples obtained from a large geographic sampling of susceptible and resistant species. Contact was made with GenScript Inc., the company from which commercially available AMPs were purchased, to determine the characteristics of peptide sequences needed to synthesize an AMP for lab use. Based on recommendations from GenScript Inc., peptide sequences need to have a hydrophobicity of less than 50% and a sequence length of less than 50 amino acids. These criteria serve as a potential barrier because none of the known bat-derived sequences analyzed satisfy both of these requirements. The final aim of this study was to generate a conceptual model of the immune response molecules activated when bats are exposed to a fungal pathogen such as Pd. Overall, this work investigated sources of variability between trials of the killing assay, analyzed known bat-derived peptide sequences, and generated a conceptual model that will serve as a guideline for identification of immune response molecules on the skin of bats in future proteomics work.
ContributorsBarton, Madisen L (Author) / Moore, Marianne (Thesis director) / Penton, Christopher (Committee member) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133592-Thumbnail Image.png
Description
White-nose syndrome (WNS) is a fungal disease that infects hibernating bats of multiple species across large portions of eastern North America. To date, WNS has been responsible for the deaths of over seven million bats. It is not yet known why certain species are able to resist infection. Since the

White-nose syndrome (WNS) is a fungal disease that infects hibernating bats of multiple species across large portions of eastern North America. To date, WNS has been responsible for the deaths of over seven million bats. It is not yet known why certain species are able to resist infection. Since the fungus invades the skin and some resistant species show no signs of the characteristic cutaneous lesions, it seems likely that resistant species contain specific defense mechanisms within their skin, such as antimicrobial peptides (AMPs) and other immunologically relevant proteins expressed by specific cell types or as secreted soluble components. Proteomics could be a useful tool for understanding differences in susceptibility, and could help identify AMPs that could be synthesized and used as control agents against the spread of the causative fungus. This study is the first to optimize proteomics methods for bat wing tissues in order to compare the skin proteomes of species variably impacted by WNS, including those of two endangered species. Further tests are planned to investigate methods of increasing protein yield without altering the size of the tissue sample collected, as well as the analysis of mass spectrometry data from processed skin tissues of five bat species differentially affected by WNS.
ContributorsPatrose, Reena Paulene (Author) / Moore, Marianne (Thesis director) / Steele, Kelly (Committee member) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
137327-Thumbnail Image.png
Description
In light of the intensifying environmental, social, and economic challenges facing the world, sustainable development is more necessary than ever. Approaching sustainability problems through Asset-Based Community Development (ABCD) programs involving music is unconventional, but holds potential for grand results. An examination of various existing community development projects, from the Playing

In light of the intensifying environmental, social, and economic challenges facing the world, sustainable development is more necessary than ever. Approaching sustainability problems through Asset-Based Community Development (ABCD) programs involving music is unconventional, but holds potential for grand results. An examination of various existing community development projects, from the Playing for Change Foundation to the Arizona State University Barrett Choir, shows that music-related activities are highly effective at fostering community development. Once a foundation of community connectedness is created, other issues such as social injustices or natural disasters can be more effectively addressed and overcome. Music and other fine arts can contribute, in a variety of ways, to the health of communities. This should be recognized and utilized in the pursuit of sustainable community development to preserve the health of the planet and its inhabitants.
ContributorsPaonessa, Carlotta Colleen (Author) / Schildkret, David (Thesis director) / Manuel-Navarrete, David (Committee member) / Barrett, The Honors College (Contributor) / Herberger Institute for Design and the Arts (Contributor) / School of Sustainability (Contributor)
Created2014-05
137520-Thumbnail Image.png
DescriptionThis written work is accompanied by an audio CD and accompanying design and packaging materials, on file at the Barrett Thesis Library. The work details the process of recording an original audio CD and developing a marketing plan, including the building of a personal brand, strategies, tactics, and environment analysis.
ContributorsHoal, Lauren Elizabeth (Author) / Russell, Timothy (Thesis director) / Eaton, John (Committee member) / Rigsby, Clarke (Committee member) / Barrett, The Honors College (Contributor) / Herberger Institute for Design and the Arts (Contributor) / Department of Marketing (Contributor) / W. P. Carey School of Business (Contributor) / Department of Finance (Contributor)
Created2013-05
Description
Biofeedback music is the integration of physiological signals with audible sound for aesthetic considerations, which an individual’s mental status corresponds to musical output. This project looks into how sounds can be drawn from the meditative and attentive states of the brain using the MindWave Mobile EEG biosensor from NeuroSky. With

Biofeedback music is the integration of physiological signals with audible sound for aesthetic considerations, which an individual’s mental status corresponds to musical output. This project looks into how sounds can be drawn from the meditative and attentive states of the brain using the MindWave Mobile EEG biosensor from NeuroSky. With the MindWave and an Arduino microcontroller processor, sonic output is attained by inputting the data collected by the MindWave, and in real time, outputting code that deciphers it into user constructed sound output. The input is scaled from values 0 to 100, measuring the ‘attentive’ state of the mind by observing alpha waves, and distributing this information to the microcontroller. The output of sound comes from sourcing this into the Musical Instrument Shield and varying the musical tonality with different chords and delay of the notes. The manipulation of alpha states highlights the control or lack thereof for the performer and touches on the question of how much control over the output there really is, much like the experimentalist Alvin Lucier displayed with his concepts in brainwave music.
ContributorsQuach, Andrew Duc (Author) / Helms Tillery, Stephen (Thesis director) / Feisst, Sabine (Committee member) / Barrett, The Honors College (Contributor) / Herberger Institute for Design and the Arts (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
Description
This project is an arrangement of three movements from Igor Stravinsky's most famous and beloved ballets for performance by classical guitar quartet. The movements arranged were "Augurs of Spring" from The Rite of Spring (1913), "Russian Dance" from Petrouchka (1911), and "Infernal Dance of All Kastchei's Subjects" from The Firebird

This project is an arrangement of three movements from Igor Stravinsky's most famous and beloved ballets for performance by classical guitar quartet. The movements arranged were "Augurs of Spring" from The Rite of Spring (1913), "Russian Dance" from Petrouchka (1911), and "Infernal Dance of All Kastchei's Subjects" from The Firebird (1910). Because the appeal of this music is largely based on the exciting rhythms and interesting harmonies, these works translate from full orchestra to guitar quite well. The arrangement process involved studying both the orchestral scores and Stravinsky's own piano reductions. The sheet music for these arrangements is accompanied by a written document which explains arrangement decisions and provides performance notes. Select movements from Stravinsky for Guitar Quartet were performed at concerts in Tempe, Glendale, Flagstaff, and Tucson throughout April 2016. The suite was performed in its entirety in the Organ Hall at the ASU School of Music on April 26th 2016 at the Guitar Ensembles Concert as well as on April 27th 2016 at Katie Sample's senior recital. A recording of the April 27th performance accompanies the sheet music and arrangement/performance notes.
ContributorsSample, Katherine Elizabeth (Author) / Koonce, Frank (Thesis director) / Lake, Brendan (Committee member) / Herberger Institute for Design and the Arts (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / School of Music (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
133500-Thumbnail Image.png
Description
Across large areas of eastern and midwestern North America, a severe reduction in multiple populations of bat species has been observed as the result of the emerging fungal disease, white-nose syndrome (WNS). WNS is caused by a psychrophilic (i.e. cold loving) fungus, Pseudogymnoascus destructans (Pd), that invades the skin of

Across large areas of eastern and midwestern North America, a severe reduction in multiple populations of bat species has been observed as the result of the emerging fungal disease, white-nose syndrome (WNS). WNS is caused by a psychrophilic (i.e. cold loving) fungus, Pseudogymnoascus destructans (Pd), that invades the skin of bats during hibernation. Recent studies have shown that during hibernation, bats have decreased immune system activity which would suggest increased susceptibility to infection. Antimicrobial peptides (AMPs) are an important component of the innate immune system and are expressed constitutively within all tissues that serve as barriers against infection. Killing pathogens at the level of the skin could prevent the need for more complex immune responses likely inhibited during hibernation, and therefore AMPs could be critical in combating infection by Pd and reducing population loss of susceptible bat species. In this investigation, the fungicidal activity of commercially available AMPs derived from the skin of multiple taxa, including amphibians, catfish, and humans were compared in order to study immunity at the level of the skin. Additionally, our aim was to create optimal methods for a low-cost antimicrobial-assay protocol that would provide quantitative results. We found that killing abilities at various concentrations of dermaseptin S-1 against Ca ATCC 10231 were consistent with literature values, while our values for magainin 2 and parasin 1 were far from the values previously recorded by other studies. It is possible that some differences can be accounted for by the difference in antimicrobial assay procedures, but our findings suggest potential differences to the well-known killing abilities of certain peptides nonetheless. Overall, the protocol established for the antimicrobial assays using serial dilutions and Sabouraud Dextrose plates was successful.
ContributorsFrazier, Eric (Co-author) / Lake, Alexis M. (Co-author) / Moore, Marianne (Thesis director) / Penton, Christopher (Committee member) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133503-Thumbnail Image.png
Description
Across large areas of eastern and midwestern North America, a severe reduction in multiple populations of bat species has been observed as the result of the emerging fungal disease, white-nose syndrome (WNS). WNS is caused by a psychrophilic (i.e. cold loving) fungus, Pseudogymnoascus destructans (Pd), that invades the skin of

Across large areas of eastern and midwestern North America, a severe reduction in multiple populations of bat species has been observed as the result of the emerging fungal disease, white-nose syndrome (WNS). WNS is caused by a psychrophilic (i.e. cold loving) fungus, Pseudogymnoascus destructans (Pd), that invades the skin of bats during hibernation. Recent studies have shown that during hibernation, bats have decreased immune system activity which would suggest increased susceptibility to infection. Antimicrobial peptides (AMPs) are an important component of the innate immune system and are expressed constitutively within all tissues that serve as barriers against infection. Killing pathogens at the level of the skin could prevent the need for more complex immune responses likely inhibited during hibernation, and therefore AMPs could be critical in combating infection by Pd and reducing population loss of susceptible bat species. In this investigation, the fungicidal activity of commercially available AMPs derived from the skin of multiple taxa, including amphibians, catfish, and humans were compared in order to study immunity at the level of the skin. Additionally, our aim was to create optimal methods for a low-cost antimicrobial-assay protocol that would provide quantitative results. We found that killing abilities at various concentrations of dermaseptin S-1 against Ca ATCC 10231 were consistent with literature values, while our values for magainin 2 and parasin 1 were far from the values previously recorded by other studies. It is possible that some differences can be accounted for by the difference in antimicrobial assay procedures, but our findings suggest potential differences to the well-known killing abilities of certain peptides nonetheless. Overall, the protocol established for the antimicrobial assays using serial dilutions and Sabouraud Dextrose plates was successful.
ContributorsLake, Alexis (Co-author) / Frazier, Eric (Co-author) / Moore, Marianne (Thesis director) / Penton, Christopher (Committee member) / W.P. Carey School of Business (Contributor) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05