Matching Items (10)
Filtering by

Clear all filters

152982-Thumbnail Image.png
Description
Damage detection in heterogeneous material systems is a complex problem and requires an in-depth understanding of the material characteristics and response under varying load and environmental conditions. A significant amount of research has been conducted in this field to enhance the fidelity of damage assessment methodologies, using a wide range

Damage detection in heterogeneous material systems is a complex problem and requires an in-depth understanding of the material characteristics and response under varying load and environmental conditions. A significant amount of research has been conducted in this field to enhance the fidelity of damage assessment methodologies, using a wide range of sensors and detection techniques, for both metallic materials and composites. However, detecting damage at the microscale is not possible with commercially available sensors. A probable way to approach this problem is through accurate and efficient multiscale modeling techniques, which are capable of tracking damage initiation at the microscale and propagation across the length scales. The output from these models will provide an improved understanding of damage initiation; the knowledge can be used in conjunction with information from physical sensors to improve the size of detectable damage. In this research, effort has been dedicated to develop multiscale modeling approaches and associated damage criteria for the estimation of damage evolution across the relevant length scales. Important issues such as length and time scales, anisotropy and variability in material properties at the microscale, and response under mechanical and thermal loading are addressed. Two different material systems have been studied: metallic material and a novel stress-sensitive epoxy polymer.

For metallic material (Al 2024-T351), the methodology initiates at the microscale where extensive material characterization is conducted to capture the microstructural variability. A statistical volume element (SVE) model is constructed to represent the material properties. Geometric and crystallographic features including grain orientation, misorientation, size, shape, principal axis direction and aspect ratio are captured. This SVE model provides a computationally efficient alternative to traditional techniques using representative volume element (RVE) models while maintaining statistical accuracy. A physics based multiscale damage criterion is developed to simulate the fatigue crack initiation. The crack growth rate and probable directions are estimated simultaneously.

Mechanically sensitive materials that exhibit specific chemical reactions upon external loading are currently being investigated for self-sensing applications. The "smart" polymer modeled in this research consists of epoxy resin, hardener, and a stress-sensitive material called mechanophore The mechanophore activation is based on covalent bond-breaking induced by external stimuli; this feature can be used for material-level damage detections. In this work Tris-(Cinnamoyl oxymethyl)-Ethane (TCE) is used as the cyclobutane-based mechanophore (stress-sensitive) material in the polymer matrix. The TCE embedded polymers have shown promising results in early damage detection through mechanically induced fluorescence. A spring-bead based network model, which bridges nanoscale information to higher length scales, has been developed to model this material system. The material is partitioned into discrete mass beads which are linked using linear springs at the microscale. A series of MD simulations were performed to define the spring stiffness in the statistical network model. By integrating multiple spring-bead models a network model has been developed to represent the material properties at the mesoscale. The model captures the statistical distribution of crosslinking degree of the polymer to represent the heterogeneous material properties at the microscale. The developed multiscale methodology is computationally efficient and provides a possible means to bridge multiple length scales (from 10 nm in MD simulation to 10 mm in FE model) without significant loss of accuracy. Parametric studies have been conducted to investigate the influence of the crosslinking degree on the material behavior. The developed methodology has been used to evaluate damage evolution in the self-sensing polymer.
ContributorsZhang, Jinjun (Author) / Chattopadhyay, Aditi (Thesis advisor) / Dai, Lenore (Committee member) / Jiang, Hanqing (Committee member) / Papandreou-Suppappola, Antonia (Committee member) / Rajadas, John (Committee member) / Arizona State University (Publisher)
Created2014
150833-Thumbnail Image.png
Description
Composite materials are increasingly being used in aircraft, automobiles, and other applications due to their high strength to weight and stiffness to weight ratios. However, the presence of damage, such as delamination or matrix cracks, can significantly compromise the performance of these materials and result in premature failure. Structural components

Composite materials are increasingly being used in aircraft, automobiles, and other applications due to their high strength to weight and stiffness to weight ratios. However, the presence of damage, such as delamination or matrix cracks, can significantly compromise the performance of these materials and result in premature failure. Structural components are often manually inspected to detect the presence of damage. This technique, known as schedule based maintenance, however, is expensive, time-consuming, and often limited to easily accessible structural elements. Therefore, there is an increased demand for robust and efficient Structural Health Monitoring (SHM) techniques that can be used for Condition Based Monitoring, which is the method in which structural components are inspected based upon damage metrics as opposed to flight hours. SHM relies on in situ frameworks for detecting early signs of damage in exposed and unexposed structural elements, offering not only reduced number of schedule based inspections, but also providing better useful life estimates. SHM frameworks require the development of different sensing technologies, algorithms, and procedures to detect, localize, quantify, characterize, as well as assess overall damage in aerospace structures so that strong estimations in the remaining useful life can be determined. The use of piezoelectric transducers along with guided Lamb waves is a method that has received considerable attention due to the weight, cost, and function of the systems based on these elements. The research in this thesis investigates the ability of Lamb waves to detect damage in feature dense anisotropic composite panels. Most current research negates the effects of experimental variability by performing tests on structurally simple isotropic plates that are used as a baseline and damaged specimen. However, in actual applications, variability cannot be negated, and therefore there is a need to research the effects of complex sample geometries, environmental operating conditions, and the effects of variability in material properties. This research is based on experiments conducted on a single blade-stiffened anisotropic composite panel that localizes delamination damage caused by impact. The overall goal was to utilize a correlative approach that used only the damage feature produced by the delamination as the damage index. This approach was adopted because it offered a simplistic way to determine the existence and location of damage without having to conduct a more complex wave propagation analysis or having to take into account the geometric complexities of the test specimen. Results showed that even in a complex structure, if the damage feature can be extracted and measured, then an appropriate damage index can be associated to it and the location of the damage can be inferred using a dense sensor array. The second experiment presented in this research studies the effects of temperature on damage detection when using one test specimen for a benchmark data set and another for damage data collection. This expands the previous experiment into exploring not only the effects of variable temperature, but also the effects of high experimental variability. Results from this work show that the damage feature in the data is not only extractable at higher temperatures, but that the data from one panel at one temperature can be directly compared to another panel at another temperature for baseline comparison due to linearity of the collected data.
ContributorsVizzini, Anthony James, II (Author) / Chattopadhyay, Aditi (Thesis advisor) / Fard, Masoud (Committee member) / Papandreou-Suppappola, Antonia (Committee member) / Arizona State University (Publisher)
Created2012
136702-Thumbnail Image.png
Description
Rainbow Connection is an integrated choir with members on and off the autism spectrum. It was founded in the spring of 2012 by Barrett students Ali Friedman, Megan Howell, and Victoria Gilman as part of an honors thesis creative project. Rainbow Connection uses the rehearsal process and other creative endeavors

Rainbow Connection is an integrated choir with members on and off the autism spectrum. It was founded in the spring of 2012 by Barrett students Ali Friedman, Megan Howell, and Victoria Gilman as part of an honors thesis creative project. Rainbow Connection uses the rehearsal process and other creative endeavors to foster natural relationship building across social gaps. A process-oriented choir, Rainbow Connection's main goals concern the connections made throughout the experience rather than the final musical product. The authors believe that individual, non-hierarchical relationships are the keys to breaking down systemized gaps between identity groups and that music is an ideal facilitator for fostering such relationships. Rainbow Connection operates under the premise that, like colors in a rainbow, choir members create something beautiful not by melding into one homogenous group, but by collaboratively showcasing their individual gifts. This paper will highlight the basic premise and structure of Rainbow Connection, outline the process of enacting the choir, and describe the authors' personal reactions and takeaways from the project.
ContributorsFriedman, Alexandra (Co-author) / Gilman, Victoria (Co-author) / Howell, Megan (Co-author) / Rio, Robin (Thesis director) / Schildkret, David (Committee member) / Barrett, The Honors College (Contributor) / School of Music (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2014-12
Description
Independent artists are thriving in the modern music industry, creating and branding their own music, and developing rich concentrations of fans. Indie artists are progressively securing positions within mainstream music while also upholding individuality. With technology advancements, to include self-recording technology, wearable devices, and mobile operating systems, independent artists are

Independent artists are thriving in the modern music industry, creating and branding their own music, and developing rich concentrations of fans. Indie artists are progressively securing positions within mainstream music while also upholding individuality. With technology advancements, to include self-recording technology, wearable devices, and mobile operating systems, independent artists are able to extend their reach to a variety of audiences. Social media platforms' progression has further catalyzed artists' capability of growth, as they have the capacity to personalize marketing content, develop loyal fan-bases, and engage directly with potential consumers. Artists are increasingly fabricating their own unique spaces in an industry that was formerly controlled by conventions. This thesis involves the production of a three-song extended play, and ascertains how to effectively capitalize on the wide array of modern marketing platforms.
ContributorsBerk, Ruth C (Author) / Ostrom, Lonnie (Thesis director) / Schlacter, John (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Supply Chain Management (Contributor)
Created2015-05
136442-Thumbnail Image.png
Description
A model has been developed to modify Euler-Bernoulli beam theory for wooden beams, using visible properties of wood knot-defects. Treating knots in a beam as a system of two ellipses that change the local bending stiffness has been shown to improve the fit of a theoretical beam displacement function to

A model has been developed to modify Euler-Bernoulli beam theory for wooden beams, using visible properties of wood knot-defects. Treating knots in a beam as a system of two ellipses that change the local bending stiffness has been shown to improve the fit of a theoretical beam displacement function to edge-line deflection data extracted from digital imagery of experimentally loaded beams. In addition, an Ellipse Logistic Model (ELM) has been proposed, using L1-regularized logistic regression, to predict the impact of a knot on the displacement of a beam. By classifying a knot as severely positive or negative, vs. mildly positive or negative, ELM can classify knots that lead to large changes to beam deflection, while not over-emphasizing knots that may not be a problem. Using ELM with a regression-fit Young's Modulus on three-point bending of Douglass Fir, it is possible estimate the effects a knot will have on the shape of the resulting displacement curve.
Created2015-05
Description
This project is an arrangement of three movements from Igor Stravinsky's most famous and beloved ballets for performance by classical guitar quartet. The movements arranged were "Augurs of Spring" from The Rite of Spring (1913), "Russian Dance" from Petrouchka (1911), and "Infernal Dance of All Kastchei's Subjects" from The Firebird

This project is an arrangement of three movements from Igor Stravinsky's most famous and beloved ballets for performance by classical guitar quartet. The movements arranged were "Augurs of Spring" from The Rite of Spring (1913), "Russian Dance" from Petrouchka (1911), and "Infernal Dance of All Kastchei's Subjects" from The Firebird (1910). Because the appeal of this music is largely based on the exciting rhythms and interesting harmonies, these works translate from full orchestra to guitar quite well. The arrangement process involved studying both the orchestral scores and Stravinsky's own piano reductions. The sheet music for these arrangements is accompanied by a written document which explains arrangement decisions and provides performance notes. Select movements from Stravinsky for Guitar Quartet were performed at concerts in Tempe, Glendale, Flagstaff, and Tucson throughout April 2016. The suite was performed in its entirety in the Organ Hall at the ASU School of Music on April 26th 2016 at the Guitar Ensembles Concert as well as on April 27th 2016 at Katie Sample's senior recital. A recording of the April 27th performance accompanies the sheet music and arrangement/performance notes.
ContributorsSample, Katherine Elizabeth (Author) / Koonce, Frank (Thesis director) / Lake, Brendan (Committee member) / Herberger Institute for Design and the Arts (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / School of Music (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
Description
This project is a small scale investigation of various factors concerning "Flow" in Piano Performance. "Flow" is the sweet spot where ability and challenge are about equal, and usually high (Csikszentmihalyi 1990). Piano performance is a state of playing the piano with some intent to perform. In this case, the

This project is a small scale investigation of various factors concerning "Flow" in Piano Performance. "Flow" is the sweet spot where ability and challenge are about equal, and usually high (Csikszentmihalyi 1990). Piano performance is a state of playing the piano with some intent to perform. In this case, the intent is to create something new or improvise. Improvisation is one form of expressive creativity on the piano stemming from some knowledge and extrapolation upon that knowledge (Nachmanovitch 82). Creativity is essential to the development of new music, and though extensive literature exists on both creativity and music independently, there is a gap in research regarding links between the two (Macdonald et al. 2006). This project aims to address some of these gaps by working with piano players and non-musicians of various technical skill levels to examine the "Flow" state in improvisation as well as potential factors affecting creative performance. Factors such as listening, self-confidence, frustration in methodology, and meditation practices were found to correlate positively with technical skill. Participants who completed the practice program were able to reconstruct challenges and enter the "Flow" state in improvisation regardless of high or low technical scores.
ContributorsDorr, Alexander Nathan (Author) / Kaplan, Robert (Thesis director) / Parker, John (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
Description
This research project dug into mathematics in music, exploring the various ways a number series was used in the 20th century to create musical compositions. The Fibonacci Series (FS) is an infinite number series that is created by taking the two previous numbers to create the next, excluding 0 and

This research project dug into mathematics in music, exploring the various ways a number series was used in the 20th century to create musical compositions. The Fibonacci Series (FS) is an infinite number series that is created by taking the two previous numbers to create the next, excluding 0 and 1 at the very start of the series. As the numbers grow larger, the ratios between the numbers of the FS approach the value of another mathematical concept known as the Golden Mean (GM). The GM is so closely related to the series that it is used interchangeably in terms of proportions and overall structure of musical pieces. This is similar to how both the FS and GM are found in aspects of nature, like to all too well-known conch shell spiral.

The FS in music was used in a variety of ways throughout the 20th century, primarily focusing on durations and overall structure in its use. Examples of this are found in Béla Bartók’s Music for Strings, Percussion, and Celeste (1936), Allegro barbaro (1911), Karlheinz Stockhausen’s Klavierstück IX (1955), and Luigi Nono’s il canto sospeso (1955). These works are analyzed in detail within my research, and I found every example to have a natural feel to them even if its use of the FS is carefully planned out by the composer. Bartók’s works are the least precise of my examples but perhaps the most natural ones. This imprecision in composition may be considered a more natural use of the FS in music, since nature is not always perfect either. However, in works such as Stockhausen’s, the structure is meticulously formatted in such that the precision is masked by a cycle as to appear more natural.

The conclusion of my research was a commissioned work for my instrument, the viola. I provided my research to composer Jacob Miller Smith, a DMA Music Composition student at ASU, and together we built the framework for the piece he wrote for me. We utilized the life cycle of the Black-Eyed Susan, a flower that uses the FS in its number of petals. The life cycle of a flower is in seven parts, so the piece was written to have seven separate sections in a palindrome within an overall ABA’ format. To utilize the FS, Smith used Fibonacci number durations for rests between notes, note/gesture groupings, and a mapping of 12358 as the set (01247). I worked with Smith during the process to make sure that the piece was technically suitable for my capabilities and the instrument, and I premiered the work in my defense.

The Fibonacci Series and Golden Mean in music provides a natural feel to the music it is present in, even if it is carefully planned out by the composer. More work is still to be done to develop the FS’s use in music, but the examples presented in this project lay down a framework for it to take a natural place in music composition.
ContributorsFerry, Courtney (Author) / Knowles, Kristina (Thesis director) / Buck, Nancy (Committee member) / School of Music (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-12
132169-Thumbnail Image.png
Description
In materials science, developing GeSn alloys is major current research interest concerning the production of efficient Group-IV photonics. These alloys are particularly interesting because the development of next-generation semiconductors for ultrafast (terahertz) optoelectronic communication devices could be accomplished through integrating these novel alloys with industry-standard silicon technology. Unfortunately, incorporating a

In materials science, developing GeSn alloys is major current research interest concerning the production of efficient Group-IV photonics. These alloys are particularly interesting because the development of next-generation semiconductors for ultrafast (terahertz) optoelectronic communication devices could be accomplished through integrating these novel alloys with industry-standard silicon technology. Unfortunately, incorporating a maximal amount of Sn into a Ge lattice has been difficult to achieve experimentally. At ambient conditions, pure Ge and Sn adopt cubic (α) and tetragonal (β) structures, respectively, however, to date the relative stability and structure of α and β phase GeSn alloys versus percent composition Sn has not been thoroughly studied. In this research project, computational tools were used to perform state-of-the-art predictive quantum simulations to study the structural, bonding and energetic trends in GeSn alloys in detail over a range of experimentally accessible compositions. Since recent X-Ray and vibrational studies have raised some controversy about the nanostructure of GeSn alloys, the investigation was conducted with ordered, random and clustered alloy models.
By means of optimized geometry analysis, pure Ge and Sn were found to adopt the alpha and beta structures, respectively, as observed experimentally. For all theoretical alloys, the corresponding αphase structure was found to have the lowest energy, for Sn percent compositions up to 90%. However at 50% Sn, the correspondingβ alloy energies are predicted to be only ~70 meV higher. The formation energy of α-phase alloys was found to be positive for all compositions, whereas only two beta formation energies were negative. Bond length distributions were analyzed and dependence on Sn incorporation was found, perhaps surprisingly, not to be directly correlated with cell volume. It is anticipated that the data collected in this project may help to elucidate observed complex vibrational properties in these systems.
ContributorsLiberman-Martin, Zoe Elise (Author) / Chizmeshya, Andrew (Thesis director) / Sayres, Scott (Committee member) / Wolf, George (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
Description
Non-Destructive Testing (NDT) is integral to preserving the structural health of materials. Techniques that fall under the NDT category are able to evaluate integrity and condition of a material without permanently altering any property of the material. Additionally, they can typically be used while the material is in

Non-Destructive Testing (NDT) is integral to preserving the structural health of materials. Techniques that fall under the NDT category are able to evaluate integrity and condition of a material without permanently altering any property of the material. Additionally, they can typically be used while the material is in active use instead of needing downtime for inspection.
The two general categories of structural health monitoring (SHM) systems include passive and active monitoring. Active SHM systems utilize an input of energy to monitor the health of a structure (such as sound waves in ultrasonics), while passive systems do not. As such, passive SHM tends to be more desirable. A system could be permanently fixed to a critical location, passively accepting signals until it records a damage event, then localize and characterize the damage. This is the goal of acoustic emissions testing.
When certain types of damage occur, such as matrix cracking or delamination in composites, the corresponding release of energy creates sound waves, or acoustic emissions, that propagate through the material. Audio sensors fixed to the surface can pick up data from both the time and frequency domains of the wave. With proper data analysis, a time of arrival (TOA) can be calculated for each sensor allowing for localization of the damage event. The frequency data can be used to characterize the damage.
In traditional acoustic emissions testing, the TOA combined with wave velocity and information about signal attenuation in the material is used to localize events. However, in instances of complex geometries or anisotropic materials (such as carbon fibre composites), velocity and attenuation can vary wildly based on the direction of interest. In these cases, localization can be based off of the time of arrival distances for each sensor pair. This technique is called Delta T mapping, and is the main focus of this study.
ContributorsBriggs, Nathaniel (Author) / Chattopadhyay, Aditi (Thesis director) / Papandreou-Suppappola, Antonia (Committee member) / Skinner, Travis (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05