Matching Items (25)
Filtering by

Clear all filters

136658-Thumbnail Image.png
Description
The purpose of this investigation is to computationally investigate instabilities appearing in the wake of a simulated helicopter rotor. Existing data suggests further understanding of these instabilities may yield design changes to the rotor blades to reduce the acoustic signature and improve the aerodynamic efficiencies of the aircraft. Test cases

The purpose of this investigation is to computationally investigate instabilities appearing in the wake of a simulated helicopter rotor. Existing data suggests further understanding of these instabilities may yield design changes to the rotor blades to reduce the acoustic signature and improve the aerodynamic efficiencies of the aircraft. Test cases of a double-bladed and single-bladed rotor have been run to investigate the causes and types of wake instabilities, as well as compare them to the short wave, long wave, and mutual inductance modes proposed by Widnall[2]. Evaluation of results revealed several perturbations appearing in both single and double-bladed wakes, the origin of which was unknown and difficult to trace. This made the computations not directly comparable to theoretical results, and drawing into question the physical flight conditions being modeled. Nonetheless, they displayed a wake structure highly sensitive to both computational and physical disturbances; thus extreme care must be taken in constructing grids and applying boundary conditions when doing wake computations to ensure results relevant to the complex and dynamic flight conditions of physical aircraft are generated.
ContributorsDrake, Nicholas Spencer (Author) / Wells, Valana (Thesis director) / Squires, Kyle (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2014-12
136994-Thumbnail Image.png
Description
The purpose of this project is to determine the feasibility of a water tunnel designed to meet certain constraints. The project goals are to tailor a design for a given location, and to produce a repeatable design sizing and shape process for specified constraints. The primary design goals include a

The purpose of this project is to determine the feasibility of a water tunnel designed to meet certain constraints. The project goals are to tailor a design for a given location, and to produce a repeatable design sizing and shape process for specified constraints. The primary design goals include a 1 m/s flow velocity in a 30cm x 30cm test section for 300 seconds. Secondary parameters, such as system height, tank height, area contraction ratio, and roof loading limits, may change depending on preference, location, or environment. The final chosen configuration is a gravity fed design with six major components: the reservoir tank, the initial duct, the contraction nozzle, the test section, the exit duct, and the variable control exit nozzle. Important sizing results include a minimum water weight of 60,000 pounds, a system height of 7.65 meters, a system length of 6 meters (not including the reservoir tank), a large shallow reservoir tank width of 12.2 meters, and height of 0.22 meters, and a control nozzle exit radius range of 5.25 cm to 5.3 cm. Computational fluid dynamic simulation further supports adherence to the design constraints but points out some potential areas for improvement in dealing with flow irregularities. These areas include the bends in the ducts, and the contraction nozzle. Despite those areas recommended for improvement, it is reasonable to conclude that the design and process fulfill the project goals.
ContributorsZykan, Brandt Davis Healy (Author) / Wells, Valana (Thesis director) / Middleton, James (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2014-05
134643-Thumbnail Image.png
Description
In this paper, the effectiveness and practical applications of cooling a computer's CPU using mineral oil is investigated. A computer processor or CPU may be immersed along with other electronics in mineral oil and still be operational. The mineral oil acts as a dielectric and prevents shorts in the electronics

In this paper, the effectiveness and practical applications of cooling a computer's CPU using mineral oil is investigated. A computer processor or CPU may be immersed along with other electronics in mineral oil and still be operational. The mineral oil acts as a dielectric and prevents shorts in the electronics while also being thermally conductive and cooling the CPU. A simple comparison of a flat plate immersed in air versus mineral oil is considered using analytical natural convection correlations. The result of this comparison indicates that the plate cooled by natural convection in air would operate at 98.41[°C] while the plate cooled by mineral oil would operate at 32.20 [°C]. Next, CFD in ANSYS Fluent was used to conduct simulation with forced convection representing a CPU fan driving fluid flow to cool the CPU. A comparison is made between cooling done with air and mineral oil. The results of the CFD simulation results indicate that using mineral oil as a substitute to air as the cooling fluid reduced the CPU operating temperature by sixty degrees Celsius. The use of mineral oil as a cooling fluid for a consumer computer has valid thermal benefits, but the practical challenges of the method will likely prevent widespread adoption.
ContributorsTichacek, Louis Joseph (Author) / Huang, Huei-Ping (Thesis director) / Herrmann, Marcus (Committee member) / Middleton, James (Committee member) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
134773-Thumbnail Image.png
Description
This thesis document outlines the construction of a device for preparation of cylindrical ice-aluminum specimens. These specimens are for testing in a uniaxial load cell with the goal of determining properties of the ice-metal interface, as part of research into spray ice material properties and how such ice might be

This thesis document outlines the construction of a device for preparation of cylindrical ice-aluminum specimens. These specimens are for testing in a uniaxial load cell with the goal of determining properties of the ice-metal interface, as part of research into spray ice material properties and how such ice might be better removed from maritime vessels operating in sub-freezing temperatures. The design of the sample preparation device is outlined, justifications for design and component choices given and discussion of the design process and how problems which arose were tackled are included. Water is piped into the device through the freezers lid and sprayed by a full cone misting nozzle onto an aluminum sample rod. The sample rod is supported with Ultra High Molecular Weight Polyethylene pillars which allow for free rotation. A motor, timing belt and pulley assembly is used to rotate this metal rod at 1.25 RPM. The final device produces samples though intermittent flow in a 5 minutes on, 20 minutes off cycle. This intermittent flow is controlled through the use of a solenoid valve which is wired into the compressor. When the thermostat detects that the freezer is too warm, the compressor kicks on and the flow of water is stopped. Additional modifications to the freezer unit include the addition of a fan to cool the compressor during device operation. Recommendations are provided towards the end of the thesis, including suggestions to change the device to allow for constant flow and that deionized water be used instead of tap water due to hard water concerns.
ContributorsBaker, Dylan Paul (Author) / Oswald, Jay (Thesis director) / Yekani Fard, Masoud (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
133102-Thumbnail Image.png
Description
Advances in computational processing have made big data analysis in fields like music information retrieval (MIR) possible. Through MIR techniques researchers have been able to study information on a song, its musical parameters, the metadata generated by the song's listeners, and contextual data regarding the artists and listeners (Schedl, 2014).

Advances in computational processing have made big data analysis in fields like music information retrieval (MIR) possible. Through MIR techniques researchers have been able to study information on a song, its musical parameters, the metadata generated by the song's listeners, and contextual data regarding the artists and listeners (Schedl, 2014). MIR research techniques have been applied within the field of music and emotions research to help analyze the correlative properties between the music information and the emotional output. By pairing methods within music and emotions research with the analysis of the musical features extracted through MIR, researchers have developed predictive models for emotions within a musical piece. This research has increased our understanding of the correlative properties of certain musical features like pitch, timbre, rhythm, dynamics, mel frequency cepstral coefficients (MFCC's), and others, to the emotions evoked by music (Lartillot 2008; Schedl 2014) This understanding of the correlative properties has enabled researchers to generate predictive models of emotion within music based on listeners' emotional response to it. However, robust models that account for a user's individualized emotional experience and the semantic nuances of emotional categorization have eluded the research community (London, 2001). To address these two main issues, more advanced analytical methods have been employed. In this article we will look at two of these more advanced analytical methods, machine learning algorithms and deep learning techniques, and discuss the effect that they have had on music and emotions research (Murthy, 2018). Current trends within MIR research, the application of support vector machines and neural networks, will also be assessed to explain how these methods help to address the two main issues within music and emotion research. Finally, future research within the field of machine and deep learning will be postulated to show how individuate models may be developed from a user or a pool of user's listening libraries. Also how developments of semi-supervised classification models that assess categorization by cluster instead of by nominal data, may be helpful in addressing the nuances of emotional categorization.
ContributorsMcgeehon, Timothy Makoto (Author) / Middleton, James (Thesis director) / Knowles, Kristina (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
Description
Due to increasing lack of resources and funding for budding student musicians, it is often not possible for this demographic to create, record, and produce their original music in the same high-budget studio environment in which music has been traditionally made. The objective of this project is to explore alternatives

Due to increasing lack of resources and funding for budding student musicians, it is often not possible for this demographic to create, record, and produce their original music in the same high-budget studio environment in which music has been traditionally made. The objective of this project is to explore alternatives which are more accessible to young independent musicians and reveal the most cost-efficient routes to obtain a high-quality result. To make this comparison, the group created budget recordings of their original music in a bedroom in true DIY fashion, and then recorded the same songs in a professional music studio using the best music and recording equipment available. The DIY recordings were mixed and mastered by the group members themselves, as well as separately by a professional audio engineer. The studio recordings were also mixed and mastered by a professional audio engineer, resulting in three final products with varying costs and quality. Ultimately, the group found that without mixing and mastering experience, it is very difficult to achieve high quality results. With the same budget recorded tracks, the group found that quality of the final product vastly increased when a professional audio engineer mixed and mastered the tracks. As far as the quality of the result, the studio recorded tracks were by far the best. Not only was the quality of the sounds from the high-end music and recording equipment much higher, the band had more freedom to be creative without the responsibility of simultaneously serving as recording engineers as was the case in the low budget recordings. The group concluded that this project was highly successful and demonstrated that high quality results could be obtained on a budget. The DIY recording techniques used in this project prove that independent musicians without access to expensive equipment and resources can still produce high quality music at the cost of more effort to serve as audio engineers in addition to musicians. However, recording in a studio with the help of a producer and professional audio engineers affords creative freedom and an increase in sound quality that is simply not possible to reproduce without the equipment and expertise that money can buy.
ContributorsBonk, Alan (Co-author) / Dhuyvetter, Nicholas Alan (Co-author) / Wickham, Kevin (Co-author) / Tobias, Evan (Thesis director) / Swoboda, Deanna (Committee member) / W.P. Carey School of Business (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
Description
The result of hundreds of hours of work is a few minutes of music. I am mechanical engineering student with a passion for music. The objective of this creative project was to learn as much as I could about music theory, composition, orchestration, notation, recording, and mixing, and to create

The result of hundreds of hours of work is a few minutes of music. I am mechanical engineering student with a passion for music. The objective of this creative project was to learn as much as I could about music theory, composition, orchestration, notation, recording, and mixing, and to create some music of my own. I learned a great deal in my two semesters of work. My music was focused on small ensembles of strings and piano. I created over ten hours of musical audio sketches and produced notation for four pieces for the piano and strings. The finished scores fit together with similar tones and textures, all sharing a minor tonality. The first piece, "Little Machine," is a simple, methodical piano piece created in the style of second species counterpoint. The second piece, "Searching" is a duet between a piano and a cello. For most of the piece, the two instruments share a rhythmic sense of mutual independence, yet neither part can exist without the either. "Something Lost" is a piano solo written with a variety of sections and a unifying idea that pervades through the piece. Finally, "3 Strings & Piano" is a melancholy adagio written for the piano, two cellos, and a double bass. Overall, this project has helped to prepare me for a lifetime of continued learning and composition. In the future I will continue to write music, and I hope to specifically learn more about the tools and techniques used by professionals in the industry so that I can find more efficient ways to produce my own music.
ContributorsSchichtel, Jacob (Author) / Stauffer, Sandra (Thesis director) / Tobias, Evan (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
135140-Thumbnail Image.png
Description
Concentrated Solar Power and Thermal Energy Storage are two technologies that are currently being explored as environmentally friendly methods of energy generation. The two technologies are often combined in an overall system to increase efficiency and reliability of the energy generation system. A collaborative group of researchers from Australia and

Concentrated Solar Power and Thermal Energy Storage are two technologies that are currently being explored as environmentally friendly methods of energy generation. The two technologies are often combined in an overall system to increase efficiency and reliability of the energy generation system. A collaborative group of researchers from Australia and the United States formed a project to design solar concentrators that utilize Concentrated Solar Power and Thermal Energy Storage. The collaborators from Arizona State designed a Latent Heat Thermal Energy Storage system for the project. It was initially proposed that the system utilize Dowtherm A as the Heat Transfer Fluid and a tin alloy as the storage material. Two thermal reservoirs were designed as part of the system; one reservoir was designed to be maintained at 240˚ C, while the other reservoir was designed to be maintained at 210˚ C. The tin was designed to receive heat from the hot reservoir during a charging cycle and discharge heat to the cold reservoir during a discharge cycle. From simulation, it was estimated that the system would complete a charging cycle in 17.5 minutes and a discharging cycle in 6.667 minutes [1]. After the initial design was fabricated and assembled, the system proved ineffective and did not perform as expected. Leaks occurred within the system under high pressure and the reservoirs could not be heated to the desired temperatures. After adding a flange to one of the reservoirs, it was decided that the system would be run with one reservoir, with water as the Heat Transfer Fluid. The storage material was changed to paraffin wax, because it would achieve phase change at a temperature lower than the boiling point of water. Since only one reservoir was available, charging cycle tests were performed on the system to gain insight on system performance. It was found that the paraffin sample only absorbs 3.29% of the available heat present during a charging cycle. This report discusses the tests performed on the system, the analysis of the data from these tests, the issues with the system that were revealed from the analyses, and potential design changes that would increase the efficiency of the system.
ContributorsKocher, Jordan Daniel (Author) / Wang, Robert (Thesis director) / Phelan, Patrick (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
135503-Thumbnail Image.png
Description
Formula SAE is a student design competition where students design and fabricate a formula-style racecar to race in a series of events against schools from around the world. It gives students of all majors the ability to use classroom theory and knowledge in a real world application. The general guidelines

Formula SAE is a student design competition where students design and fabricate a formula-style racecar to race in a series of events against schools from around the world. It gives students of all majors the ability to use classroom theory and knowledge in a real world application. The general guidelines for the prototype racecars is for the students to use four-stroke, Otto cycle piston engines with a displacement of no greater than 610cc. A 20mm air restrictor downstream the throttle limits the power of the engines to under 100 horsepower. A 178-page rulebook outlines the remaining restrictions as they apply to the various vehicle systems: vehicle dynamics, driver interface, aerodynamics, and engine. Vehicle dynamics is simply the study of the forces which affect wheeled vehicles in motion. Its primary components are the chassis and suspension system. Driver interface controls everything that the driver interacts with including steering wheel, seat, pedals, and shifter. Aerodynamics refers to the outside skin of the vehicle which controls the amount of drag and downforce on the vehicle. Finally, the engine consists of the air intake, engine block, cooling system, and the exhaust. The exhaust is one of the most important pieces of an engine that is often overlooked in racecar design. The purpose of the exhaust is to control the removal of the combusted air-fuel mixture from the engine cylinders. The exhaust as well as the intake is important because they govern the flow into and out of the engine's cylinders (Heywood 231). They are especially important in racecar design because they have a great impact on the power produced by an engine. The higher the airflow through the cylinders, the larger amount of fuel that can be burned and consequently, the greater amount of power the engine can produce. In the exhaust system, higher airflow is governed by several factors. A good exhaust design gives and engine a higher volumetric efficiency through the exhaust scavenging effect. Volumetric efficiency is also affected by frictional losses. In addition, the system should ideally be lightweight, and easily manufacturable. Arizona State University's Formula SAE racecar uses a Honda F4i Engine from a CBR 600 motorcycle. It is a four cylinder Otto cycle engine with a 600cc displacement. An ideal or tuned exhaust system for this car would maximize the negative gauge pressure during valve overlap at the ideal operating rpm. Based on the typical track layout for the Formula SAE design series, an ideal exhaust system would be optimized for 7500 rpm and work well in the range
ContributorsButterfield, Brandon Michael (Author) / Huang, Huei-Ping (Thesis director) / Trimble, Steven (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Materials Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
148437-Thumbnail Image.png
Description

A novel CFD algorithm called LEAP is currently being developed by the Kasbaoui Research Group (KRG) using the Immersed Boundary Method (IBM) to describe complex geometries. To validate the algorithm, this research project focused on testing the algorithm in three dimensions by simulating a sphere placed in a moving fluid.

A novel CFD algorithm called LEAP is currently being developed by the Kasbaoui Research Group (KRG) using the Immersed Boundary Method (IBM) to describe complex geometries. To validate the algorithm, this research project focused on testing the algorithm in three dimensions by simulating a sphere placed in a moving fluid. The simulation results were compared against the experimentally derived Schiller-Naumann Correlation. Over the course of 36 trials, various spatial and temporal resolutions were tested at specific Reynolds numbers between 10 and 300. It was observed that numerical errors decreased with increasing spatial and temporal resolution. This result was expected as increased resolution should give results closer to experimental values. Having shown the accuracy and robustness of this method, KRG will continue to develop this algorithm to explore more complex geometries such as aircraft engines or human lungs.

ContributorsMadden, David Jackson (Author) / Kasbaoui, Mohamed Houssem (Thesis director) / Herrmann, Marcus (Committee member) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05