Matching Items (20)
Filtering by

Clear all filters

136526-Thumbnail Image.png
Description
The purpose of this thesis is to examine the events surrounding the creation of the oboe and its rapid spread throughout Europe during the mid to late seventeenth century. The first section describes similar instruments that existed for thousands of years before the invention of the oboe. The following sections

The purpose of this thesis is to examine the events surrounding the creation of the oboe and its rapid spread throughout Europe during the mid to late seventeenth century. The first section describes similar instruments that existed for thousands of years before the invention of the oboe. The following sections examine reasons and methods for the oboe's invention, as well as possible causes of its migration from its starting place in France to other European countries, as well as many other places around the world. I conclude that the oboe was invented to suit the needs of composers in the court of Louis XIV, and that it was brought to other countries by French performers who left France for many reasons, including to escape from the authority of composer Jean-Baptiste Lully and in some cases to promote French culture in other countries.
ContributorsCook, Mary Katherine (Author) / Schuring, Martin (Thesis director) / Micklich, Albie (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / School of Music (Contributor)
Created2015-05
Description
“In what ways can I engage an audience of primarily western musicians in experiencing a new musical world in dialogue with the one they know?” The author begins by asking himself this question. He describes a project which will answer this question, then selects and focuses on a single aspect

“In what ways can I engage an audience of primarily western musicians in experiencing a new musical world in dialogue with the one they know?” The author begins by asking himself this question. He describes a project which will answer this question, then selects and focuses on a single aspect of this project: the arranging of three pieces from Kenzou Hatanaka’s Iyonokuni Matsuyama Suigun Daiko for woodwind quintet and taiko from its original orchestration for band and taiko. Emphasis is placed on creating an enticing multicultural work that equally presents western and Japanese influences, and the author’s compositional process and considerations are explained. A discussion of what the author learned about multiculturalism and himself concludes.
ContributorsBerry, Tanyon Hideki Lane (Author) / Schuring, Martin (Thesis director) / Morgan, Eileen (Committee member) / School of Music (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133286-Thumbnail Image.png
Description
This is a two-part thesis, completed in conjunction with my Materials Science and Engineering Capstone Project. The first part involves the design and testing of cold-extruded high-density polyethylene for student oboe reeds. The goal of this section was to create a longer-lasting reed that produces a similar sound to a

This is a two-part thesis, completed in conjunction with my Materials Science and Engineering Capstone Project. The first part involves the design and testing of cold-extruded high-density polyethylene for student oboe reeds. The goal of this section was to create a longer-lasting reed that produces a similar sound to a cane reed, has less variation in quality, and costs less per year than cane reeds. For low-income students in particular, the cost of purchasing cane oboe reeds ($500-$2,000 per year) is simply not feasible. This project was designed to allow oboe to be a more affordable option for all students. Money should not be a factor that limits whether or a not a child is able to explore their interests. The process used to create the synthetic reed prototype involves cold-extrusion of high-density polyethylene in order to induce orientation in the polymer to replicate the uniaxial orientation of fibrous cane. After successful cold-extrusion of a high-density polyethylene (HDPE) cylinder, the sample was made into a reed by following standard reedmaking procedures. Then, the HDPE reed and a cane reed were quantitatively tested for various qualities, including flexural modulus, hardness, and free vibration frequency. The results from the design project are promising and show a successful proof of concept. The first prototype of an oriented HDPE reed demonstrates characteristics of a cane reed. The areas that need the most improvement are the flexural modulus and the stability of the higher overtones, but these areas can be improved with further development of the cold-extrusion process. The second part of this thesis is a survey and analysis focusing on the qualitative comparison of synthetic and cane oboe reeds. The study can be used in the future to refine the design of synthetic reeds, more specifically the cold-extruded high-density polyethylene student oboe reed I designed, to best replicate a cane reed. Rather than approaching this study from a purely engineering mindset, I brought in my own experience as an oboist. Therefore, the opinions of oboists who have a wide range of experience are considered in the survey. A panel of five oboists participated in the survey. They provided their opinion on various aspects of the five reeds, including vibrancy, response, stability, resistance, tone, and overall quality. Each of these metrics are rated on a scale from one to five, from unacceptable to performance quality. According to the survey, a participant's personal, hand-made cane reed is overall the most preferred option. My prototype HDPE student reed must be improved in many areas in order to rank near the other four reeds. However, its vibrancy and resistance already rival that of a Jones student reed. As this is just the first prototype, that is a significant accomplishment. With further refinement of the cold-extrusion and reedmaking method, the other areas of the HDPE reed may be improved, and the reed may eventually compete with the existing synthetic and cane reeds on the market.
ContributorsMitchell, Alexis Jacqueline (Author) / Adams, James (Thesis director) / Schuring, Martin (Committee member) / School of Music (Contributor) / Materials Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133102-Thumbnail Image.png
Description
Advances in computational processing have made big data analysis in fields like music information retrieval (MIR) possible. Through MIR techniques researchers have been able to study information on a song, its musical parameters, the metadata generated by the song's listeners, and contextual data regarding the artists and listeners (Schedl, 2014).

Advances in computational processing have made big data analysis in fields like music information retrieval (MIR) possible. Through MIR techniques researchers have been able to study information on a song, its musical parameters, the metadata generated by the song's listeners, and contextual data regarding the artists and listeners (Schedl, 2014). MIR research techniques have been applied within the field of music and emotions research to help analyze the correlative properties between the music information and the emotional output. By pairing methods within music and emotions research with the analysis of the musical features extracted through MIR, researchers have developed predictive models for emotions within a musical piece. This research has increased our understanding of the correlative properties of certain musical features like pitch, timbre, rhythm, dynamics, mel frequency cepstral coefficients (MFCC's), and others, to the emotions evoked by music (Lartillot 2008; Schedl 2014) This understanding of the correlative properties has enabled researchers to generate predictive models of emotion within music based on listeners' emotional response to it. However, robust models that account for a user's individualized emotional experience and the semantic nuances of emotional categorization have eluded the research community (London, 2001). To address these two main issues, more advanced analytical methods have been employed. In this article we will look at two of these more advanced analytical methods, machine learning algorithms and deep learning techniques, and discuss the effect that they have had on music and emotions research (Murthy, 2018). Current trends within MIR research, the application of support vector machines and neural networks, will also be assessed to explain how these methods help to address the two main issues within music and emotion research. Finally, future research within the field of machine and deep learning will be postulated to show how individuate models may be developed from a user or a pool of user's listening libraries. Also how developments of semi-supervised classification models that assess categorization by cluster instead of by nominal data, may be helpful in addressing the nuances of emotional categorization.
ContributorsMcgeehon, Timothy Makoto (Author) / Middleton, James (Thesis director) / Knowles, Kristina (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
Description
Due to increasing lack of resources and funding for budding student musicians, it is often not possible for this demographic to create, record, and produce their original music in the same high-budget studio environment in which music has been traditionally made. The objective of this project is to explore alternatives

Due to increasing lack of resources and funding for budding student musicians, it is often not possible for this demographic to create, record, and produce their original music in the same high-budget studio environment in which music has been traditionally made. The objective of this project is to explore alternatives which are more accessible to young independent musicians and reveal the most cost-efficient routes to obtain a high-quality result. To make this comparison, the group created budget recordings of their original music in a bedroom in true DIY fashion, and then recorded the same songs in a professional music studio using the best music and recording equipment available. The DIY recordings were mixed and mastered by the group members themselves, as well as separately by a professional audio engineer. The studio recordings were also mixed and mastered by a professional audio engineer, resulting in three final products with varying costs and quality. Ultimately, the group found that without mixing and mastering experience, it is very difficult to achieve high quality results. With the same budget recorded tracks, the group found that quality of the final product vastly increased when a professional audio engineer mixed and mastered the tracks. As far as the quality of the result, the studio recorded tracks were by far the best. Not only was the quality of the sounds from the high-end music and recording equipment much higher, the band had more freedom to be creative without the responsibility of simultaneously serving as recording engineers as was the case in the low budget recordings. The group concluded that this project was highly successful and demonstrated that high quality results could be obtained on a budget. The DIY recording techniques used in this project prove that independent musicians without access to expensive equipment and resources can still produce high quality music at the cost of more effort to serve as audio engineers in addition to musicians. However, recording in a studio with the help of a producer and professional audio engineers affords creative freedom and an increase in sound quality that is simply not possible to reproduce without the equipment and expertise that money can buy.
ContributorsBonk, Alan (Co-author) / Dhuyvetter, Nicholas Alan (Co-author) / Wickham, Kevin (Co-author) / Tobias, Evan (Thesis director) / Swoboda, Deanna (Committee member) / W.P. Carey School of Business (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
Description
The result of hundreds of hours of work is a few minutes of music. I am mechanical engineering student with a passion for music. The objective of this creative project was to learn as much as I could about music theory, composition, orchestration, notation, recording, and mixing, and to create

The result of hundreds of hours of work is a few minutes of music. I am mechanical engineering student with a passion for music. The objective of this creative project was to learn as much as I could about music theory, composition, orchestration, notation, recording, and mixing, and to create some music of my own. I learned a great deal in my two semesters of work. My music was focused on small ensembles of strings and piano. I created over ten hours of musical audio sketches and produced notation for four pieces for the piano and strings. The finished scores fit together with similar tones and textures, all sharing a minor tonality. The first piece, "Little Machine," is a simple, methodical piano piece created in the style of second species counterpoint. The second piece, "Searching" is a duet between a piano and a cello. For most of the piece, the two instruments share a rhythmic sense of mutual independence, yet neither part can exist without the either. "Something Lost" is a piano solo written with a variety of sections and a unifying idea that pervades through the piece. Finally, "3 Strings & Piano" is a melancholy adagio written for the piano, two cellos, and a double bass. Overall, this project has helped to prepare me for a lifetime of continued learning and composition. In the future I will continue to write music, and I hope to specifically learn more about the tools and techniques used by professionals in the industry so that I can find more efficient ways to produce my own music.
ContributorsSchichtel, Jacob (Author) / Stauffer, Sandra (Thesis director) / Tobias, Evan (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
135140-Thumbnail Image.png
Description
Concentrated Solar Power and Thermal Energy Storage are two technologies that are currently being explored as environmentally friendly methods of energy generation. The two technologies are often combined in an overall system to increase efficiency and reliability of the energy generation system. A collaborative group of researchers from Australia and

Concentrated Solar Power and Thermal Energy Storage are two technologies that are currently being explored as environmentally friendly methods of energy generation. The two technologies are often combined in an overall system to increase efficiency and reliability of the energy generation system. A collaborative group of researchers from Australia and the United States formed a project to design solar concentrators that utilize Concentrated Solar Power and Thermal Energy Storage. The collaborators from Arizona State designed a Latent Heat Thermal Energy Storage system for the project. It was initially proposed that the system utilize Dowtherm A as the Heat Transfer Fluid and a tin alloy as the storage material. Two thermal reservoirs were designed as part of the system; one reservoir was designed to be maintained at 240˚ C, while the other reservoir was designed to be maintained at 210˚ C. The tin was designed to receive heat from the hot reservoir during a charging cycle and discharge heat to the cold reservoir during a discharge cycle. From simulation, it was estimated that the system would complete a charging cycle in 17.5 minutes and a discharging cycle in 6.667 minutes [1]. After the initial design was fabricated and assembled, the system proved ineffective and did not perform as expected. Leaks occurred within the system under high pressure and the reservoirs could not be heated to the desired temperatures. After adding a flange to one of the reservoirs, it was decided that the system would be run with one reservoir, with water as the Heat Transfer Fluid. The storage material was changed to paraffin wax, because it would achieve phase change at a temperature lower than the boiling point of water. Since only one reservoir was available, charging cycle tests were performed on the system to gain insight on system performance. It was found that the paraffin sample only absorbs 3.29% of the available heat present during a charging cycle. This report discusses the tests performed on the system, the analysis of the data from these tests, the issues with the system that were revealed from the analyses, and potential design changes that would increase the efficiency of the system.
ContributorsKocher, Jordan Daniel (Author) / Wang, Robert (Thesis director) / Phelan, Patrick (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
Description

This creative project focused on the process of making an album from scratch. From songwriting to recording, this three-year project ended with the release of a ten-song album available on all streaming platforms. The goal of this project was to experience the same general process as professional recording artists and

This creative project focused on the process of making an album from scratch. From songwriting to recording, this three-year project ended with the release of a ten-song album available on all streaming platforms. The goal of this project was to experience the same general process as professional recording artists and gain a better understanding of the music industry.

ContributorsStone, Amanda (Author) / Myers, Nathan (Thesis director) / Steiner, Kiernan (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / School of Music, Dance and Theatre (Contributor)
Created2023-05
ContributorsStone, Amanda (Author) / Myers, Nathan (Thesis director) / Steiner, Kiernan (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / School of Music, Dance and Theatre (Contributor)
Created2023-05
ContributorsStone, Amanda (Author) / Myers, Nathan (Thesis director) / Steiner, Kiernan (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / School of Music, Dance and Theatre (Contributor)
Created2023-05