Matching Items (850)
Filtering by

Clear all filters

149995-Thumbnail Image.png
Description
A new arrangement of the Concerto for Two Horns in E-flat Major, Hob. VIId/6, attributed by some to Franz Joseph Haydn, is presented here. The arrangement reduces the orchestral portion to ten wind instruments, specifically a double wind quintet, to facilitate performance of the work. A full score and a

A new arrangement of the Concerto for Two Horns in E-flat Major, Hob. VIId/6, attributed by some to Franz Joseph Haydn, is presented here. The arrangement reduces the orchestral portion to ten wind instruments, specifically a double wind quintet, to facilitate performance of the work. A full score and a complete set of parts are included. In support of this new arrangement, a discussion of the early treatment of horns in pairs and the subsequent development of the double horn concerto in the eighteenth century provides historical context for the Concerto for Two Horns in E-flat major. A summary of the controversy concerning the identity of the composer of this concerto is followed by a description of the content and structure of each of its three movements. Some comments on the procedures of the arrangement complete the background information.
ContributorsYeh, Guan-Lin (Author) / Ericson, John (Thesis advisor) / Holbrook, Amy (Committee member) / Micklich, Albie (Committee member) / Pilafian, J. Samuel (Committee member) / Arizona State University (Publisher)
Created2011
150029-Thumbnail Image.png
Description
A dual-channel directional digital hearing aid (DHA) front-end using a fully differential difference amplifier (FDDA) based Microphone interface circuit (MIC) for a capacitive Micro Electro Mechanical Systems (MEMS) microphones and an adaptive-power analog font end (AFE) is presented. The Microphone interface circuit based on FDDA converts

A dual-channel directional digital hearing aid (DHA) front-end using a fully differential difference amplifier (FDDA) based Microphone interface circuit (MIC) for a capacitive Micro Electro Mechanical Systems (MEMS) microphones and an adaptive-power analog font end (AFE) is presented. The Microphone interface circuit based on FDDA converts the capacitance variations into voltage signal, achieves a noise of 32 dB SPL (sound pressure level) and an SNR of 72 dB, additionally it also performs single to differential conversion allowing for fully differential analog signal chain. The analog front-end consists of 40dB VGA and a power scalable continuous time sigma delta ADC, with 68dB SNR dissipating 67u¬W from a 1.2V supply. The ADC implements a self calibrating feedback DAC, for calibrating the 2nd order non-linearity. The VGA and power scalable ADC is fabricated on 0.25 um CMOS TSMC process. The dual channels of the DHA are precisely matched and achieve about 0.5dB gain mismatch, resulting in greater than 5dB directivity index. This will enable a highly integrated and low power DHA
ContributorsNaqvi, Syed Roomi (Author) / Kiaei, Sayfe (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Chae, Junseok (Committee member) / Barnby, Hugh (Committee member) / Aberle, James T., 1961- (Committee member) / Arizona State University (Publisher)
Created2011
150036-Thumbnail Image.png
Description
Demand for biosensor research applications is growing steadily. According to a new report by Frost & Sullivan, the biosensor market is expected to reach $14.42 billion by 2016. Clinical diagnostic applications continue to be the largest market for biosensors, and this demand is likely to continue through 2016 and beyond.

Demand for biosensor research applications is growing steadily. According to a new report by Frost & Sullivan, the biosensor market is expected to reach $14.42 billion by 2016. Clinical diagnostic applications continue to be the largest market for biosensors, and this demand is likely to continue through 2016 and beyond. Biosensor technology for use in clinical diagnostics, however, requires translational research that moves bench science and theoretical knowledge toward marketable products. Despite the high volume of academic research to date, only a handful of biomedical devices have become viable commercial applications. Academic research must increase its focus on practical uses for biosensors. This dissertation is an example of this increased focus, and discusses work to advance microfluidic-based protein biosensor technologies for practical use in clinical diagnostics. Four areas of work are discussed: The first involved work to develop reusable/reconfigurable biosensors that are useful in applications like biochemical science and analytical chemistry that require detailed sensor calibration. This work resulted in a prototype sensor and an in-situ electrochemical surface regeneration technique that can be used to produce microfluidic-based reusable biosensors. The second area of work looked at non-specific adsorption (NSA) of biomolecules, which is a persistent challenge in conventional microfluidic biosensors. The results of this work produced design methods that reduce the NSA. The third area of work involved a novel microfluidic sensing platform that was designed to detect target biomarkers using competitive protein adsorption. This technique uses physical adsorption of proteins to a surface rather than complex and time-consuming immobilization procedures. This method enabled us to selectively detect a thyroid cancer biomarker, thyroglobulin, in a controlled-proteins cocktail and a cardiovascular biomarker, fibrinogen, in undiluted human serum. The fourth area of work involved expanding the technique to produce a unique protein identification method; Pattern-recognition. A sample mixture of proteins generates a distinctive composite pattern upon interaction with a sensing platform consisting of multiple surfaces whereby each surface consists of a distinct type of protein pre-adsorbed on the surface. The utility of the "pattern-recognition" sensing mechanism was then verified via recognition of a particular biomarker, C-reactive protein, in the cocktail sample mixture.
ContributorsChoi, Seokheun (Author) / Chae, Junseok (Thesis advisor) / Tao, Nongjian (Committee member) / Yu, Hongyu (Committee member) / Forzani, Erica (Committee member) / Arizona State University (Publisher)
Created2011
149988-Thumbnail Image.png
Description
Alzheimer's Disease (AD) is a debilitating neurodegenerative disease. The disease leads to dementia and loss of cognitive functions and affects about 4.5 million people in the United States. It is the 7th leading cause of death and is a huge financial burden on the healthcare industry. There are no means

Alzheimer's Disease (AD) is a debilitating neurodegenerative disease. The disease leads to dementia and loss of cognitive functions and affects about 4.5 million people in the United States. It is the 7th leading cause of death and is a huge financial burden on the healthcare industry. There are no means of diagnosing the disease before neurodegeneration is significant and sadly there is no cure that controls its progression. The protein beta-amyloid or Aâ plays an important role in the progression of the disease. It is formed from the cleavage of the Amyloid Precursor Protein by two enzymes - â and ã-secretases and is found in the plaques that are deposits found in Alzheimer brains. This work describes the generation of therapeutics based on inhibition of the cleavage by â-secretase. Using in-vitro recombinant antibody display libraries to screen for single chain variable fragment (scFv) antibodies; this work describes the isolation and characterization of scFv that target the â-secretase cleavage site on APP. This approach is especially relevant since non-specific inhibition of the enzyme may have undesirable effects since the enzyme has been shown to have other important substrates. The scFv iBSEC1 successfully recognized APP, reduced â-secretase cleavage of APP and reduced Aâ levels in a cell model of Alzheimer's Disease. This work then describes the first application of bispecific antibody therapeutics to Alzheimer's Disease. iBSEC1 scFv was combined with a proteolytic scFv that enhances the "good" pathway (á-secretase cleavage) that results in alternative cleavage of APP to generate the bispecific tandem scFv - DIA10D. DIA10D reduced APP cleavage by â-secretase and steered it towards the "good" pathway thus increasing the generation of the fragment sAPPá which is neuroprotective. Finally, treatment with iBSEC1 is evaluated for reduced oxidative stress, which is observed in cells over expressing APP when they are exposed to stress. Recombinant antibody based therapeutics like scFv have several advantages since they retain the high specificity of the antibodies but are safer since they lack the constant region and are smaller, potentially facilitating easier delivery to the brain
ContributorsBoddapati, Shanta (Author) / Sierks, Michael (Thesis advisor) / Arizona State University (Publisher)
Created2011
Description
The purpose of this project is to introduce Bryan Johanson's composition for two guitars, 13 Ways of Looking at 12 Strings, and present an authoritative recording appropriate for publishing. This fifty-minute piece represents a fascinating suite in thirteen movements. The author of this project performed both guitar parts, recorded them

The purpose of this project is to introduce Bryan Johanson's composition for two guitars, 13 Ways of Looking at 12 Strings, and present an authoritative recording appropriate for publishing. This fifty-minute piece represents a fascinating suite in thirteen movements. The author of this project performed both guitar parts, recorded them separately in a music studio, then mixed them together into one recording. This document focuses on the critical investigation and description of the piece with a brief theoretical analysis, a discussion of performance difficulties, and guitar preparation. The composer approved the use and the scope of this project. Bryan Johanson is one of the leading contemporary composers for the guitar today. 13 Ways of Looking at 12 Strings is a unique guitar dictionary that takes us from Bach to Hendrix and highlights the unique capabilities of the instrument. It utilizes encoded messages, glass slides, metal mutes, explosive "riffs," rhythmic propulsion, improvisation, percussion, fugual writing, and much more. It has a great potential to make the classical guitar attractive to wider audiences, not limited only to guitarists and musicians. The main resources employed in researching this document are existing recordings of Johanson's other compositions and documentation of his personal views and ideas. This written document uses the composer's prolific and eclectic compositional output in order to draw conclusions and trace motifs. This project is a significant and original contribution in expanding the guitar's repertoire, and it uniquely contributes to bringing forth a significant piece of music.
ContributorsSavic, Nenad (Author) / Koonce, Frank (Thesis advisor) / Rotaru, Catalin (Committee member) / McLin, Katherine (Committee member) / Feisst, Sabine (Committee member) / Landschoot, Thomas (Committee member) / Arizona State University (Publisher)
Created2011
Description
The purpose of this project was to commission, perform, and discuss a new work for an instrument pairing not often utilized, oboe and percussion. The composer, Alyssa Morris, was selected in June 2009. Her work, titled Forecast, was completed in October of 2009 and premiered in February of 2010, as

The purpose of this project was to commission, perform, and discuss a new work for an instrument pairing not often utilized, oboe and percussion. The composer, Alyssa Morris, was selected in June 2009. Her work, titled Forecast, was completed in October of 2009 and premiered in February of 2010, as part of a program showcasing music for oboe and percussion. Included in this document is a detailed biography of the composer, a description of the four movements of Forecast, performance notes for each movement, a diagram for stage set-up, the full score, the program from the premiere performance with biographies of all the performers involved, and both a live recording and MIDI sound file. The performance notes discuss issues that arose during preparation for the premiere and should help avoid potential pitfalls. TrevCo Music, publisher of the work, graciously allowed inclusion of the full score. This score is solely for use in this document; please visit the publisher's website for purchasing information. The commission and documentation of this composition are intended to add to the repertoire for oboe in an unusual instrument pairing and to encourage further exploration of such combinations.
ContributorsCreamer, Caryn (Author) / Schuring, Martin (Thesis advisor) / Hill, Gary (Committee member) / Holbrook, Amy (Committee member) / Micklich, Albie (Committee member) / Spring, Robert (Committee member) / Arizona State University (Publisher)
Created2011
149724-Thumbnail Image.png
Description
This composition was commissioned by the Orgelpark to be performed in Amsterdam in September 2011 during Gaudeamus Muziekweek. It will be performed by the vocal group VocaalLab Nederland. It is scored for four vocalists, organ, tanpura, and electronic sound. The work is a culmination of my studies in South Indian

This composition was commissioned by the Orgelpark to be performed in Amsterdam in September 2011 during Gaudeamus Muziekweek. It will be performed by the vocal group VocaalLab Nederland. It is scored for four vocalists, organ, tanpura, and electronic sound. The work is a culmination of my studies in South Indian Carnatic rhythm, North Indian classical singing, and American minimalism. It is a meditation on the idea that the drone and pulse are micro/macro aspects of the same phenomenon of vibration. Cycles are created on the macroscale through a mathematically defined scale of harmonic/pitch relationships. Cycles are created on the microscale through the subdivision and addition of rhythmic pulses.
ContributorsAdler, Jacob (Composer) / Rockmaker, Jody (Thesis advisor) / Feisst, Sabine (Committee member) / Etezady, Roshanne, 1973- (Committee member) / Arizona State University (Publisher)
Created2011
149740-Thumbnail Image.png
Description
Although one finds much scholarship on nineteenth-century music in America, one finds relatively little about music in the post-Civil-War frontier west. Generalities concerning small frontier towns of regional importance remain to be discovered. This paper aims to contribute to scholarship by chronicling musical life in the early years of two

Although one finds much scholarship on nineteenth-century music in America, one finds relatively little about music in the post-Civil-War frontier west. Generalities concerning small frontier towns of regional importance remain to be discovered. This paper aims to contribute to scholarship by chronicling musical life in the early years of two such towns in northern Arizona territory: Prescott and Flagstaff. Prescott, adjacent to Fort Whipple, was founded in 1864 to serve as capital of the new territory. Primarily home to soldiers and miners, the town was subject to many challenges of frontier life. Flagstaff, ninety miles to the north-northwest, was founded about two decades later in 1883 during the building of the Atlantic & Pacific Railroad, which connected the town to Albuquerque, New Mexico in the east and southern California in the west. Although the particular resources of each town provided many different musical opportunities, extant newspaper articles from Prescott's Arizona Miner and Flagstaff's Arizona Champion describe communities in which musical concerts, dances and theatrical performances provided entertainment and socializing for its citizens. Furthermore, music was an important part of developing institutions such as the church, schools, and fraternal lodges, and the newspapers of both towns advertised musical instruments and sheet music. Both towns were home to amateur musicians, and both offered the occasional opportunity to learn to dance or play an instrument. Although territorial Arizona was sometimes harsh and resources were limited, music was valued in these communities and was a consistent presence in frontier life.
ContributorsJohnson, Amber V (Author) / Oldani, Robert W. (Thesis advisor) / Holbrook, Amy (Committee member) / Saucier, Catherine (Committee member) / Arizona State University (Publisher)
Created2011
Description
The focus of this study was the first Serbian opera, Na Uranku (At Dawn). It was written by Stanislav Binièki (1872-1942) and was first performed in 1903 at the National Theatre in Belgrade. There were two objectives of this project: (1) a live concert performance of the opera, which produced

The focus of this study was the first Serbian opera, Na Uranku (At Dawn). It was written by Stanislav Binièki (1872-1942) and was first performed in 1903 at the National Theatre in Belgrade. There were two objectives of this project: (1) a live concert performance of the opera, which produced an audio recording that can be found as an appendix; and, (2) an accompanying document containing a history and an analysis of the work. While Binièki's opera is recognized as an extraordinary artistic achievement, and a new genre of musical enrichment for Serbian music, little had been previously written either about the composer or the work. At Dawn is a romantic opera in the verismo tradition with national elements. The significance of this opera is not only in its artistic expression but also in how it helped the music of Serbia evolve. Early opera settings in Serbia in the mid-nineteenth to early twentieth century did not have the same wealth of history upon which to draw as had existed in the rich operatic oeuvre in Western Europe and Russia. Similarly, conditions for performance were not satisfactory, as were no professional orchestras or singers. Furthermore, audiences were not accustomed to this type of art form. The opera served as an educational instrument for the audience, not only training them to a different type of music but also evolving its national consciousness. Binièki's opera was a foundation on which later generations of composers built. The artistic value of this opera is emphasized. The musical language includes an assimilation of various influences from Western Europe and Russia, properly incorporated into the Serbian musical core. Audience reaction is discussed, a positive affirmation that Binièki was moving in the right direction in establishing a path for the further development of the artistic field of Serbian musical culture. A synopsis of the work as well as the requisite performing forces is also included.
ContributorsMinov, Jana (Author) / Russell, Timothy (Thesis advisor) / Levy, Benjamin (Committee member) / Schildkret, David (Committee member) / Rogers, Rodney (Committee member) / Reber, William (Committee member) / Arizona State University (Publisher)
Created2011
149782-Thumbnail Image.png
Description
In this work, a novel method is developed for making nano- and micro- fibrous hydrogels capable of preventing the rejection of implanted materials. This is achieved by either (1) mimicking the native cellular environment, to exert fine control over the cellular response or (2) acting as a protective barrier, to

In this work, a novel method is developed for making nano- and micro- fibrous hydrogels capable of preventing the rejection of implanted materials. This is achieved by either (1) mimicking the native cellular environment, to exert fine control over the cellular response or (2) acting as a protective barrier, to camouflage the foreign nature of a material and evade recognition by the immune system. Comprehensive characterization and in vitro studies described here provide a foundation for developing substrates for use in clinical applications. Hydrogel dextran and poly(acrylic acid) (PAA) fibers are formed via electrospinning, in sizes ranging from nanometers to microns in diameter. While "as-electrospun" fibers are continuous in length, sonication is used to fragment fibers into short fiber "bristles" and generate nano- and micro- fibrous surface coatings over a wide range of topographies. Dex-PAA fibrous surfaces are chemically modified, and then optimized and characterized for non-fouling and ECM-mimetic properties. The non-fouling nature of fibers is verified, and cell culture studies show differential responses dependent upon chemical, topographical and mechanical properties. Dex-PAA fibers are advantageously unique in that (1) a fine degree of control is possible over three significant parameters critical for modifying cellular response: topography, chemistry and mechanical properties, over a range emulating that of native cellular environments, (2) the innate nature of the material is non-fouling, providing an inert background for adding back specific bioactive functionality, and (3) the fibers can be applied as a surface coating or comprise the scaffold itself. This is the first reported work of dex-PAA hydrogel fibers formed via electrospinning and thermal cross-linking, and unique to this method, no toxic solvents or cross-linking agents are needed to create hydrogels or for surface attachment. This is also the first reported work of using sonication to fragment electrospun hydrogel fibers, and in which surface coatings were made via simple electrostatic interaction and dehydration. These versatile features enable fibrous surface coatings to be applied to virtually any material. Results of this research broadly impact the design of biomaterials which contact cells in the body by directing the consequent cell-material interaction.
ContributorsLouie, Katherine BoYook (Author) / Massia, Stephen P (Thesis advisor) / Bennett, Kevin (Committee member) / Garcia, Antonio (Committee member) / Pauken, Christine (Committee member) / Vernon, Brent (Committee member) / Arizona State University (Publisher)
Created2011