Matching Items (3)
Filtering by

Clear all filters

151722-Thumbnail Image.png
Description
Digital sound synthesis allows the creation of a great variety of sounds. Focusing on interesting or ecologically valid sounds for music, simulation, aesthetics, or other purposes limits the otherwise vast digital audio palette. Tools for creating such sounds vary from arbitrary methods of altering recordings to precise simulations of vibrating

Digital sound synthesis allows the creation of a great variety of sounds. Focusing on interesting or ecologically valid sounds for music, simulation, aesthetics, or other purposes limits the otherwise vast digital audio palette. Tools for creating such sounds vary from arbitrary methods of altering recordings to precise simulations of vibrating objects. In this work, methods of sound synthesis by re-sonification are considered. Re-sonification, herein, refers to the general process of analyzing, possibly transforming, and resynthesizing or reusing recorded sounds in meaningful ways, to convey information. Applied to soundscapes, re-sonification is presented as a means of conveying activity within an environment. Applied to the sounds of objects, this work examines modeling the perception of objects as well as their physical properties and the ability to simulate interactive events with such objects. To create soundscapes to re-sonify geographic environments, a method of automated soundscape design is presented. Using recorded sounds that are classified based on acoustic, social, semantic, and geographic information, this method produces stochastically generated soundscapes to re-sonify selected geographic areas. Drawing on prior knowledge, local sounds and those deemed similar comprise a locale's soundscape. In the context of re-sonifying events, this work examines processes for modeling and estimating the excitations of sounding objects. These include plucking, striking, rubbing, and any interaction that imparts energy into a system, affecting the resultant sound. A method of estimating a linear system's input, constrained to a signal-subspace, is presented and applied toward improving the estimation of percussive excitations for re-sonification. To work toward robust recording-based modeling and re-sonification of objects, new implementations of banded waveguide (BWG) models are proposed for object modeling and sound synthesis. Previous implementations of BWGs use arbitrary model parameters and may produce a range of simulations that do not match digital waveguide or modal models of the same design. Subject to linear excitations, some models proposed here behave identically to other equivalently designed physical models. Under nonlinear interactions, such as bowing, many of the proposed implementations exhibit improvements in the attack characteristics of synthesized sounds.
ContributorsFink, Alex M (Author) / Spanias, Andreas S (Thesis advisor) / Cook, Perry R. (Committee member) / Turaga, Pavan (Committee member) / Tsakalis, Konstantinos (Committee member) / Arizona State University (Publisher)
Created2013
152361-Thumbnail Image.png
Description
The study of acoustic ecology is concerned with the manner in which life interacts with its environment as mediated through sound. As such, a central focus is that of the soundscape: the acoustic environment as perceived by a listener. This dissertation examines the application of several computational tools in the

The study of acoustic ecology is concerned with the manner in which life interacts with its environment as mediated through sound. As such, a central focus is that of the soundscape: the acoustic environment as perceived by a listener. This dissertation examines the application of several computational tools in the realms of digital signal processing, multimedia information retrieval, and computer music synthesis to the analysis of the soundscape. Namely, these tools include a) an open source software library, Sirens, which can be used for the segmentation of long environmental field recordings into individual sonic events and compare these events in terms of acoustic content, b) a graph-based retrieval system that can use these measures of acoustic similarity and measures of semantic similarity using the lexical database WordNet to perform both text-based retrieval and automatic annotation of environmental sounds, and c) new techniques for the dynamic, realtime parametric morphing of multiple field recordings, informed by the geographic paths along which they were recorded.
ContributorsMechtley, Brandon Michael (Author) / Spanias, Andreas S (Thesis advisor) / Sundaram, Hari (Thesis advisor) / Cook, Perry R. (Committee member) / Li, Baoxin (Committee member) / Arizona State University (Publisher)
Created2013
162018-Thumbnail Image.png
Description
Behavior-driven obesity has become one of the most challenging global epidemics since the 1990s, and is presently associated with the leading causes of death in the U.S. and worldwide, including diabetes, cardiovascular disease, strokes, and some forms of cancer. The use of system identification and control engineering principles in the

Behavior-driven obesity has become one of the most challenging global epidemics since the 1990s, and is presently associated with the leading causes of death in the U.S. and worldwide, including diabetes, cardiovascular disease, strokes, and some forms of cancer. The use of system identification and control engineering principles in the design of novel and perpetually adaptive behavioral health interventions for promoting physical activity and healthy eating has been the central theme in many recent contributions. However, the absence of experimental studies specifically designed with the purpose of developing control-oriented behavioral models has restricted prior efforts in this domain to the use of hypothetical simulations to demonstrate the potential viability of these interventions. In this dissertation, the use of first-of-a-kind, real-life experimental results to develop dynamic, participant-validated behavioral models essential for the design and evaluation of optimized and adaptive behavioral interventions is examined. Following an intergenerational approach, the first part of this work aims to develop a dynamical systems model of intrauterine fetal growth with the prime goal of predicting infant birth weight, which has been associated with subsequent childhood and adult-onset obesity. The use of longitudinal input-output data from the “Healthy Mom Zone” intervention study has enabled the estimation and validation of this fetoplacental model. The second part establishes a set of data-driven behavioral models founded on Social Cognitive Theory (SCT). The “Just Walk” intervention experiment, developed at Arizona State University using system identification principles, has lent a unique opportunity to estimate and validate both black-box and semiphysical SCT models for predicting physical activity behavior. Further, this dissertation addresses some of the model estimation challenges arising from the limitations of “Just Walk”, including the need for developing nontraditional modeling approaches for short datasets, as well as delivers a new theoretical and algorithmic framework for structured state-space model estimation that can be used in a broader set of application domains. Finally, adaptive closed-loop intervention simulations of participant-validated SCT models from “Just Walk” are presented using a Hybrid Model Predictive Control (HMPC) control law. A simple HMPC controller reconfiguration strategy for designing both single- and multi-phase intervention designs is proposed.
ContributorsFreigoun, Mohammad T (Author) / Raupp, Gregory B (Thesis advisor) / Tsakalis, Konstantinos S (Thesis advisor) / Spanias, Andreas S (Committee member) / Forzani, Erica S (Committee member) / Muhich, Christopher L (Committee member) / Arizona State University (Publisher)
Created2021