Matching Items (55)
Filtering by

Clear all filters

131525-Thumbnail Image.png
Description
The original version of Helix, the one I pitched when first deciding to make a video game
for my thesis, is an action-platformer, with the intent of metroidvania-style progression
and an interconnected world map.

The current version of Helix is a turn based role-playing game, with the intent of roguelike
gameplay and a dark

The original version of Helix, the one I pitched when first deciding to make a video game
for my thesis, is an action-platformer, with the intent of metroidvania-style progression
and an interconnected world map.

The current version of Helix is a turn based role-playing game, with the intent of roguelike
gameplay and a dark fantasy theme. We will first be exploring the challenges that came
with programming my own game - not quite from scratch, but also without a prebuilt
engine - then transition into game design and how Helix has evolved from its original form
to what we see today.
ContributorsDiscipulo, Isaiah K (Author) / Meuth, Ryan (Thesis director) / Kobayashi, Yoshihiro (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
136549-Thumbnail Image.png
Description
A primary goal in computer science is to develop autonomous systems. Usually, we provide computers with tasks and rules for completing those tasks, but what if we could extend this type of system to physical technology as well? In the field of programmable matter, researchers are tasked with developing synthetic

A primary goal in computer science is to develop autonomous systems. Usually, we provide computers with tasks and rules for completing those tasks, but what if we could extend this type of system to physical technology as well? In the field of programmable matter, researchers are tasked with developing synthetic materials that can change their physical properties \u2014 such as color, density, and even shape \u2014 based on predefined rules or continuous, autonomous collection of input. In this research, we are most interested in particles that can perform computations, bond with other particles, and move. In this paper, we provide a theoretical particle model that can be used to simulate the performance of such physical particle systems, as well as an algorithm to perform expansion, wherein these particles can be used to enclose spaces or even objects.
ContributorsLaff, Miles (Author) / Richa, Andrea (Thesis director) / Bazzi, Rida (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2015-05
136691-Thumbnail Image.png
Description
Covering subsequences with sets of permutations arises in many applications, including event-sequence testing. Given a set of subsequences to cover, one is often interested in knowing the fewest number of permutations required to cover each subsequence, and in finding an explicit construction of such a set of permutations that has

Covering subsequences with sets of permutations arises in many applications, including event-sequence testing. Given a set of subsequences to cover, one is often interested in knowing the fewest number of permutations required to cover each subsequence, and in finding an explicit construction of such a set of permutations that has size close to or equal to the minimum possible. The construction of such permutation coverings has proven to be computationally difficult. While many examples for permutations of small length have been found, and strong asymptotic behavior is known, there are few explicit constructions for permutations of intermediate lengths. Most of these are generated from scratch using greedy algorithms. We explore a different approach here. Starting with a set of permutations with the desired coverage properties, we compute local changes to individual permutations that retain the total coverage of the set. By choosing these local changes so as to make one permutation less "essential" in maintaining the coverage of the set, our method attempts to make a permutation completely non-essential, so it can be removed without sacrificing total coverage. We develop a post-optimization method to do this and present results on sequence covering arrays and other types of permutation covering problems demonstrating that it is surprisingly effective.
ContributorsMurray, Patrick Charles (Author) / Colbourn, Charles (Thesis director) / Czygrinow, Andrzej (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Physics (Contributor)
Created2014-12
136702-Thumbnail Image.png
Description
Rainbow Connection is an integrated choir with members on and off the autism spectrum. It was founded in the spring of 2012 by Barrett students Ali Friedman, Megan Howell, and Victoria Gilman as part of an honors thesis creative project. Rainbow Connection uses the rehearsal process and other creative endeavors

Rainbow Connection is an integrated choir with members on and off the autism spectrum. It was founded in the spring of 2012 by Barrett students Ali Friedman, Megan Howell, and Victoria Gilman as part of an honors thesis creative project. Rainbow Connection uses the rehearsal process and other creative endeavors to foster natural relationship building across social gaps. A process-oriented choir, Rainbow Connection's main goals concern the connections made throughout the experience rather than the final musical product. The authors believe that individual, non-hierarchical relationships are the keys to breaking down systemized gaps between identity groups and that music is an ideal facilitator for fostering such relationships. Rainbow Connection operates under the premise that, like colors in a rainbow, choir members create something beautiful not by melding into one homogenous group, but by collaboratively showcasing their individual gifts. This paper will highlight the basic premise and structure of Rainbow Connection, outline the process of enacting the choir, and describe the authors' personal reactions and takeaways from the project.
ContributorsFriedman, Alexandra (Co-author) / Gilman, Victoria (Co-author) / Howell, Megan (Co-author) / Rio, Robin (Thesis director) / Schildkret, David (Committee member) / Barrett, The Honors College (Contributor) / School of Music (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2014-12
Description
Independent artists are thriving in the modern music industry, creating and branding their own music, and developing rich concentrations of fans. Indie artists are progressively securing positions within mainstream music while also upholding individuality. With technology advancements, to include self-recording technology, wearable devices, and mobile operating systems, independent artists are

Independent artists are thriving in the modern music industry, creating and branding their own music, and developing rich concentrations of fans. Indie artists are progressively securing positions within mainstream music while also upholding individuality. With technology advancements, to include self-recording technology, wearable devices, and mobile operating systems, independent artists are able to extend their reach to a variety of audiences. Social media platforms' progression has further catalyzed artists' capability of growth, as they have the capacity to personalize marketing content, develop loyal fan-bases, and engage directly with potential consumers. Artists are increasingly fabricating their own unique spaces in an industry that was formerly controlled by conventions. This thesis involves the production of a three-song extended play, and ascertains how to effectively capitalize on the wide array of modern marketing platforms.
ContributorsBerk, Ruth C (Author) / Ostrom, Lonnie (Thesis director) / Schlacter, John (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Supply Chain Management (Contributor)
Created2015-05
136516-Thumbnail Image.png
Description
Bots tamper with social media networks by artificially inflating the popularity of certain topics. In this paper, we define what a bot is, we detail different motivations for bots, we describe previous work in bot detection and observation, and then we perform bot detection of our own. For our bot

Bots tamper with social media networks by artificially inflating the popularity of certain topics. In this paper, we define what a bot is, we detail different motivations for bots, we describe previous work in bot detection and observation, and then we perform bot detection of our own. For our bot detection, we are interested in bots on Twitter that tweet Arabic extremist-like phrases. A testing dataset is collected using the honeypot method, and five different heuristics are measured for their effectiveness in detecting bots. The model underperformed, but we have laid the ground-work for a vastly untapped focus on bot detection: extremist ideal diffusion through bots.
ContributorsKarlsrud, Mark C. (Author) / Liu, Huan (Thesis director) / Morstatter, Fred (Committee member) / Barrett, The Honors College (Contributor) / Computing and Informatics Program (Contributor) / Computer Science and Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2015-05
136271-Thumbnail Image.png
Description
The OMFIT (One Modeling Framework for Integrated Tasks) modeling environment and the BRAINFUSE module have been deployed on the PPPL (Princeton Plasma Physics Laboratory) computing cluster with modifications that have rendered the application of artificial neural networks (NNs) to the TRANSP databases for the JET (Joint European Torus), TFTR (Tokamak

The OMFIT (One Modeling Framework for Integrated Tasks) modeling environment and the BRAINFUSE module have been deployed on the PPPL (Princeton Plasma Physics Laboratory) computing cluster with modifications that have rendered the application of artificial neural networks (NNs) to the TRANSP databases for the JET (Joint European Torus), TFTR (Tokamak Fusion Test Reactor), and NSTX (National Spherical Torus Experiment) devices possible through their use. This development has facilitated the investigation of NNs for predicting heat transport profiles in JET, TFTR, and NSTX, and has promoted additional investigations to discover how else NNs may be of use to scientists at PPPL. In applying NNs to the aforementioned devices for predicting heat transport, the primary goal of this endeavor is to reproduce the success shown in Meneghini et al. in using NNs for heat transport prediction in DIII-D. Being able to reproduce the results from is important because this in turn would provide scientists at PPPL with a quick and efficient toolset for reliably predicting heat transport profiles much faster than any existing computational methods allow; the progress towards this goal is outlined in this report, and potential additional applications of the NN framework are presented.
ContributorsLuna, Christopher Joseph (Author) / Tang, Wenbo (Thesis director) / Treacy, Michael (Committee member) / Orso, Meneghini (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Physics (Contributor)
Created2015-05
136409-Thumbnail Image.png
Description
Twitter, the microblogging platform, has grown in prominence to the point that the topics that trend on the network are often the subject of the news and other traditional media. By predicting trends on Twitter, it could be possible to predict the next major topic of interest to the public.

Twitter, the microblogging platform, has grown in prominence to the point that the topics that trend on the network are often the subject of the news and other traditional media. By predicting trends on Twitter, it could be possible to predict the next major topic of interest to the public. With this motivation, this paper develops a model for trends leveraging previous work with k-nearest-neighbors and dynamic time warping. The development of this model provides insight into the length and features of trends, and successfully generalizes to identify 74.3% of trends in the time period of interest. The model developed in this work provides understanding into why par- ticular words trend on Twitter.
ContributorsMarshall, Grant A (Author) / Liu, Huan (Thesis director) / Morstatter, Fred (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2015-05
136442-Thumbnail Image.png
Description
A model has been developed to modify Euler-Bernoulli beam theory for wooden beams, using visible properties of wood knot-defects. Treating knots in a beam as a system of two ellipses that change the local bending stiffness has been shown to improve the fit of a theoretical beam displacement function to

A model has been developed to modify Euler-Bernoulli beam theory for wooden beams, using visible properties of wood knot-defects. Treating knots in a beam as a system of two ellipses that change the local bending stiffness has been shown to improve the fit of a theoretical beam displacement function to edge-line deflection data extracted from digital imagery of experimentally loaded beams. In addition, an Ellipse Logistic Model (ELM) has been proposed, using L1-regularized logistic regression, to predict the impact of a knot on the displacement of a beam. By classifying a knot as severely positive or negative, vs. mildly positive or negative, ELM can classify knots that lead to large changes to beam deflection, while not over-emphasizing knots that may not be a problem. Using ELM with a regression-fit Young's Modulus on three-point bending of Douglass Fir, it is possible estimate the effects a knot will have on the shape of the resulting displacement curve.
Created2015-05
135246-Thumbnail Image.png
Description
The areas of cloud computing and web services have grown rapidly in recent years, resulting in software that is more interconnected and and widely used than ever before. As a result of this proliferation, there needs to be a way to assess the quality of these web services in order

The areas of cloud computing and web services have grown rapidly in recent years, resulting in software that is more interconnected and and widely used than ever before. As a result of this proliferation, there needs to be a way to assess the quality of these web services in order to ensure their reliability and accuracy. This project explores different ways in which services can be tested and evaluated through the design of various testing techniques and their implementations in a web application, which can be used by students or developers to test their web services.
ContributorsHilliker, Mark Paul (Author) / Chen, Yinong (Thesis director) / Nakamura, Mutsumi (Committee member) / Computer Science and Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05