Matching Items (22)
Filtering by

Clear all filters

151718-Thumbnail Image.png
Description
The increasing popularity of Twitter renders improved trustworthiness and relevance assessment of tweets much more important for search. However, given the limitations on the size of tweets, it is hard to extract measures for ranking from the tweet's content alone. I propose a method of ranking tweets by generating a

The increasing popularity of Twitter renders improved trustworthiness and relevance assessment of tweets much more important for search. However, given the limitations on the size of tweets, it is hard to extract measures for ranking from the tweet's content alone. I propose a method of ranking tweets by generating a reputation score for each tweet that is based not just on content, but also additional information from the Twitter ecosystem that consists of users, tweets, and the web pages that tweets link to. This information is obtained by modeling the Twitter ecosystem as a three-layer graph. The reputation score is used to power two novel methods of ranking tweets by propagating the reputation over an agreement graph based on tweets' content similarity. Additionally, I show how the agreement graph helps counter tweet spam. An evaluation of my method on 16~million tweets from the TREC 2011 Microblog Dataset shows that it doubles the precision over baseline Twitter Search and achieves higher precision than current state of the art method. I present a detailed internal empirical evaluation of RAProp in comparison to several alternative approaches proposed by me, as well as external evaluation in comparison to the current state of the art method.
ContributorsRavikumar, Srijith (Author) / Kambhampati, Subbarao (Thesis advisor) / Davulcu, Hasan (Committee member) / Liu, Huan (Committee member) / Arizona State University (Publisher)
Created2013
136516-Thumbnail Image.png
Description
Bots tamper with social media networks by artificially inflating the popularity of certain topics. In this paper, we define what a bot is, we detail different motivations for bots, we describe previous work in bot detection and observation, and then we perform bot detection of our own. For our bot

Bots tamper with social media networks by artificially inflating the popularity of certain topics. In this paper, we define what a bot is, we detail different motivations for bots, we describe previous work in bot detection and observation, and then we perform bot detection of our own. For our bot detection, we are interested in bots on Twitter that tweet Arabic extremist-like phrases. A testing dataset is collected using the honeypot method, and five different heuristics are measured for their effectiveness in detecting bots. The model underperformed, but we have laid the ground-work for a vastly untapped focus on bot detection: extremist ideal diffusion through bots.
ContributorsKarlsrud, Mark C. (Author) / Liu, Huan (Thesis director) / Morstatter, Fred (Committee member) / Barrett, The Honors College (Contributor) / Computing and Informatics Program (Contributor) / Computer Science and Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2015-05
133143-Thumbnail Image.png
Description
The prevalence of bots, or automated accounts, on social media is a well-known problem. Some of the ways bots harm social media users include, but are not limited to, spreading misinformation, influencing topic discussions, and dispersing harmful links. Bots have affected the field of disaster relief on social media as

The prevalence of bots, or automated accounts, on social media is a well-known problem. Some of the ways bots harm social media users include, but are not limited to, spreading misinformation, influencing topic discussions, and dispersing harmful links. Bots have affected the field of disaster relief on social media as well. These bots cause problems such as preventing rescuers from determining credible calls for help, spreading fake news and other malicious content, and generating large amounts of content which burdens rescuers attempting to provide aid in the aftermath of disasters. To address these problems, this research seeks to detect bots participating in disaster event related discussions and increase the recall, or number of bots removed from the network, of Twitter bot detection methods. The removal of these bots will also prevent human users from accidentally interacting with these bot accounts and being manipulated by them. To accomplish this goal, an existing bot detection classification algorithm known as BoostOR was employed. BoostOR is an ensemble learning algorithm originally modeled to increase bot detection recall in a dataset and it has the possibility to solve the social media bot dilemma where there may be several different types of bots in the data. BoostOR was first introduced as an adjustment to existing ensemble classifiers to increase recall. However, after testing the BoostOR algorithm on unobserved datasets, results showed that BoostOR does not perform as expected. This study attempts to improve the BoostOR algorithm by comparing it with a baseline classification algorithm, AdaBoost, and then discussing the intentional differences between the two. Additionally, this study presents the main factors which contribute to the shortcomings of the BoostOR algorithm and proposes a solution to improve it. These recommendations should ensure that the BoostOR algorithm can be applied to new and unobserved datasets in the future.
ContributorsDavis, Matthew William (Author) / Liu, Huan (Thesis director) / Nazer, Tahora H. (Committee member) / Computer Science and Engineering Program (Contributor, Contributor) / Department of Information Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
134317-Thumbnail Image.png
Description
Social media is used by people every day to discuss the nuances of their lives. Major League Baseball (MLB) is a popular sport in the United States, and as such has generated a great deal of activity on Twitter. As fantasy baseball continues to grow in popularity, so does the

Social media is used by people every day to discuss the nuances of their lives. Major League Baseball (MLB) is a popular sport in the United States, and as such has generated a great deal of activity on Twitter. As fantasy baseball continues to grow in popularity, so does the research into better algorithms for picking players. Most of the research done in this area focuses on improving the prediction of a player's individual performance. However, the crowd-sourcing power afforded by social media may enable more informed predictions about players' performances. Players are chosen by popularity and personal preferences by most amateur gamblers. While some of these trends (particularly the long-term ones) are captured by ranking systems, this research was focused on predicting the daily spikes in popularity (and therefore price or draft order) by comparing the number of mentions that the player received on Twitter compared to their previous mentions. In doing so, it was demonstrated that improved fantasy baseball predictions can be made through leveraging social media data.
ContributorsRuskin, Lewis John (Author) / Liu, Huan (Thesis director) / Montgomery, Douglas (Committee member) / Morstatter, Fred (Committee member) / Industrial, Systems (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
161967-Thumbnail Image.png
Description
Machine learning models can pick up biases and spurious correlations from training data and projects and amplify these biases during inference, thus posing significant challenges in real-world settings. One approach to mitigating this is a class of methods that can identify filter out bias-inducing samples from the training datasets to

Machine learning models can pick up biases and spurious correlations from training data and projects and amplify these biases during inference, thus posing significant challenges in real-world settings. One approach to mitigating this is a class of methods that can identify filter out bias-inducing samples from the training datasets to force models to avoid being exposed to biases. However, the filtering leads to a considerable wastage of resources as most of the dataset created is discarded as biased. This work deals with avoiding the wastage of resources by identifying and quantifying the biases. I further elaborate on the implications of dataset filtering on robustness (to adversarial attacks) and generalization (to out-of-distribution samples). The findings suggest that while dataset filtering does help to improve OOD(Out-Of-Distribution) generalization, it has a significant negative impact on robustness to adversarial attacks. It also shows that transforming bias-inducing samples into adversarial samples (instead of eliminating them from the dataset) can significantly boost robustness without sacrificing generalization.
ContributorsSachdeva, Bhavdeep Singh (Author) / Baral, Chitta (Thesis advisor) / Liu, Huan (Committee member) / Yang, Yezhou (Committee member) / Arizona State University (Publisher)
Created2021
171440-Thumbnail Image.png
Description
Machine learning models and in specific, neural networks, are well known for being inscrutable in nature. From image classification tasks and generative techniques for data augmentation, to general purpose natural language models, neural networks are currently the algorithm of preference that is riding the top of the current artificial intelligence

Machine learning models and in specific, neural networks, are well known for being inscrutable in nature. From image classification tasks and generative techniques for data augmentation, to general purpose natural language models, neural networks are currently the algorithm of preference that is riding the top of the current artificial intelligence (AI) wave, having experienced the greatest boost in popularity above any other machine learning solution. However, due to their inscrutable design based on the optimization of millions of parameters, it is ever so complex to understand how their decision is influenced nor why (and when) they fail. While some works aim at explaining neural network decisions or making systems to be inherently interpretable the great majority of state of the art machine learning works prioritize performance over interpretability effectively becoming black boxes. Hence, there is still uncertainty in the decision boundaries of these already deployed solutions whose predictions should still be analyzed and taken with care. This becomes even more important when these models are used on sensitive scenarios such as medicine, criminal justice, settings with native inherent social biases or where egregious mispredictions can negatively impact the system or human trust down the line. Thus, the aim of this work is to provide a comprehensive analysis on the failure modes of the state of the art neural networks from three domains: large image classifiers and their misclassifications, generative adversarial networks when used for data augmentation and transformer networks applied to structured representations and reasoning about actions and change.
ContributorsOlmo Hernandez, Alberto (Author) / Kambhampati, Subbarao (Thesis advisor) / Liu, Huan (Committee member) / Li, Baoxin (Committee member) / Sengupta, Sailik (Committee member) / Arizona State University (Publisher)
Created2022
189385-Thumbnail Image.png
Description
Machine learning models are increasingly being deployed in real-world applications where their predictions are used to make critical decisions in a variety of domains. The proliferation of such models has led to a burgeoning need to ensure the reliability and safety of these models, given the potential negative consequences of

Machine learning models are increasingly being deployed in real-world applications where their predictions are used to make critical decisions in a variety of domains. The proliferation of such models has led to a burgeoning need to ensure the reliability and safety of these models, given the potential negative consequences of model vulnerabilities. The complexity of machine learning models, along with the extensive data sets they analyze, can result in unpredictable and unintended outcomes. Model vulnerabilities may manifest due to errors in data input, algorithm design, or model deployment, which can have significant implications for both individuals and society. To prevent such negative outcomes, it is imperative to identify model vulnerabilities at an early stage in the development process. This will aid in guaranteeing the integrity, dependability, and safety of the models, thus mitigating potential risks and enabling the full potential of these technologies to be realized. However, enumerating vulnerabilities can be challenging due to the complexity of the real-world environment. Visual analytics, situated at the intersection of human-computer interaction, computer graphics, and artificial intelligence, offers a promising approach for achieving high interpretability of complex black-box models, thus reducing the cost of obtaining insights into potential vulnerabilities of models. This research is devoted to designing novel visual analytics methods to support the identification and analysis of model vulnerabilities. Specifically, generalizable visual analytics frameworks are instantiated to explore vulnerabilities in machine learning models concerning security (adversarial attacks and data perturbation) and fairness (algorithmic bias). In the end, a visual analytics approach is proposed to enable domain experts to explain and diagnose the model improvement of addressing identified vulnerabilities of machine learning models in a human-in-the-loop fashion. The proposed methods hold the potential to enhance the security and fairness of machine learning models deployed in critical real-world applications.
ContributorsXie, Tiankai (Author) / Maciejewski, Ross (Thesis advisor) / Liu, Huan (Committee member) / Bryan, Chris (Committee member) / Tong, Hanghang (Committee member) / Arizona State University (Publisher)
Created2023
171740-Thumbnail Image.png
Description
An important objective of AI is to understand real-world observations and build up interactive communication with people. The ability to interpret and react to the perception reveals the important necessity of developing such a system across both the modalities of Vision (V) and Language (L). Although there have been massive

An important objective of AI is to understand real-world observations and build up interactive communication with people. The ability to interpret and react to the perception reveals the important necessity of developing such a system across both the modalities of Vision (V) and Language (L). Although there have been massive efforts on various VL tasks, e.g., Image/Video Captioning, Visual Question Answering, and Textual Grounding, very few of them focus on building the VL models with increased efficiency under real-world scenarios. The main focus of this dissertation is to comprehensively investigate the very uncharted efficient VL learning, aiming to build lightweight, data-efficient, and real-world applicable VL models. The proposed studies in this dissertation take three primary aspects into account when it comes to efficient VL, 1). Data Efficiency: collecting task-specific annotations is prohibitively expensive and so manual labor is not always attainable. Techniques are developed to assist the VL learning from implicit supervision, i.e., in a weakly- supervised fashion. 2). Continuing from that, efficient representation learning is further explored with increased scalability, leveraging a large image-text corpus without task-specific annotations. In particular, the knowledge distillation technique is studied for generic Representation Learning which proves to bring substantial performance gain to the regular representation learning schema. 3). Architectural Efficiency. Deploying the VL model on edge devices is notoriously challenging due to their cumbersome architectures. To further extend these advancements to the real world, a novel efficient VL architecture is designed to tackle the inference bottleneck and the inconvenient two-stage training. Extensive discussions have been conducted on several critical aspects that prominently influence the performances of compact VL models.
ContributorsFang, Zhiyuan (Author) / Yang, Yezhou (Thesis advisor) / Baral, Chitta (Committee member) / Liu, Huan (Committee member) / Liu, Zicheng (Committee member) / Arizona State University (Publisher)
Created2022
171813-Thumbnail Image.png
Description
This dissertation investigates the problem of efficiently and effectively prioritizing a vulnerability risk in a computer networking system. Vulnerability prioritization is one of the most challenging issues in vulnerability management, which affects allocating preventive and defensive resources in a computer networking system. Due to the large number of identified vulnerabilities,

This dissertation investigates the problem of efficiently and effectively prioritizing a vulnerability risk in a computer networking system. Vulnerability prioritization is one of the most challenging issues in vulnerability management, which affects allocating preventive and defensive resources in a computer networking system. Due to the large number of identified vulnerabilities, it is very challenging to remediate them all in a timely fashion. Thus, an efficient and effective vulnerability prioritization framework is required. To deal with this challenge, this dissertation proposes a novel risk-based vulnerability prioritization framework that integrates the recent artificial intelligence techniques (i.e., neuro-symbolic computing and logic reasoning). The proposed work enhances the vulnerability management process by prioritizing vulnerabilities with high risk by refining the initial risk assessment with the network constraints. This dissertation is organized as follows. The first part of this dissertation presents the overview of the proposed risk-based vulnerability prioritization framework, which contains two stages. The second part of the dissertation investigates vulnerability risk features in a computer networking system. The third part proposes the first stage of this framework, a vulnerability risk assessment model. The proposed assessment model captures the pattern of vulnerability risk features to provide a more comprehensive risk assessment for a vulnerability. The fourth part proposes the second stage of this framework, a vulnerability prioritization reasoning engine. This reasoning engine derives network constraints from interactions between vulnerabilities and network environment elements based on network and system setups. This proposed framework assesses a vulnerability in a computer networking system based on its actual security impact by refining the initial risk assessment with the network constraints.
ContributorsZeng, Zhen (Author) / Xue, Guoliang (Thesis advisor) / Liu, Huan (Committee member) / Zhao, Ming (Committee member) / Yang, Yezhou (Committee member) / Arizona State University (Publisher)
Created2022
168720-Thumbnail Image.png
Description
Artificial intelligence (AI) has the potential to drive us towards a future in which all of humanity flourishes. It also comes with substantial risks of oppression and calamity. For example, social media platforms have knowingly and surreptitiously promoted harmful content, e.g., the rampant instances of disinformation and hate speech. Machine

Artificial intelligence (AI) has the potential to drive us towards a future in which all of humanity flourishes. It also comes with substantial risks of oppression and calamity. For example, social media platforms have knowingly and surreptitiously promoted harmful content, e.g., the rampant instances of disinformation and hate speech. Machine learning algorithms designed for combating hate speech were also found biased against underrepresented and disadvantaged groups. In response, researchers and organizations have been working to publish principles and regulations for the responsible use of AI. However, these conceptual principles also need to be turned into actionable algorithms to materialize AI for good. The broad aim of my research is to design AI systems that responsibly serve users and develop applications with social impact. This dissertation seeks to develop the algorithmic solutions for Socially Responsible AI (SRAI), a systematic framework encompassing the responsible AI principles and algorithms, and the responsible use of AI. In particular, it first introduces an interdisciplinary definition of SRAI and the AI responsibility pyramid, in which four types of AI responsibilities are described. It then elucidates the purpose of SRAI: how to bridge from the conceptual definitions to responsible AI practice through the three human-centered operations -- to Protect and Inform users, and Prevent negative consequences. They are illustrated in the social media domain given that social media has revolutionized how people live but has also contributed to the rise of many societal issues. The three representative tasks for each dimension are cyberbullying detection, disinformation detection and dissemination, and unintended bias mitigation. The means of SRAI is to develop responsible AI algorithms. Many issues (e.g., discrimination and generalization) can arise when AI systems are trained to improve accuracy without knowing the underlying causal mechanism. Causal inference, therefore, is intrinsically related to understanding and resolving these challenging issues in AI. As a result, this dissertation also seeks to gain an in-depth understanding of AI by looking into the precise relationships between causes and effects. For illustration, it introduces a recent work that applies deep learning to estimating causal effects and shows that causal learning algorithms can outperform traditional methods.
ContributorsCheng, Lu (Author) / Liu, Huan (Thesis advisor) / Varshney, Kush R. (Committee member) / Silva, Yasin N. (Committee member) / Wu, Carole-Jean (Committee member) / Candan, Kasim S. (Committee member) / Arizona State University (Publisher)
Created2022