Matching Items (69)
Filtering by

Clear all filters

148039-Thumbnail Image.png
Description

Glioblastoma (GB) is one of the deadliest cancers and the most common form of adult primary brain tumors. SGEF (ARHGEF26) has been previously shown to be overexpressed in GB tumors, play a role in cell invasion/migration, and increase temozolomide (TMZ) resistance.[3] It was hypothesized parental LN229 cell lines with SGEF

Glioblastoma (GB) is one of the deadliest cancers and the most common form of adult primary brain tumors. SGEF (ARHGEF26) has been previously shown to be overexpressed in GB tumors, play a role in cell invasion/migration, and increase temozolomide (TMZ) resistance.[3] It was hypothesized parental LN229 cell lines with SGEF knockdown (LN229-SGEFi) will show decreased metabolism in the MTS assay and decreased colony formation in a colony formation assay compared to parental LN229 cells after challenging the two cell lines with TMZ. For WB and co-immunoprecipitation (co-IP), parental LN229 cells with endogenous SGEF and BRCA were expected to interact and stain in the BRCA1:IP WB. LN229-SGEFi cells were expected to show very little SGEF precipitated due to shRNA targeted knockdown of SGEF. In conditions with mutations in the BRCA1 binding site (LN229-SGEFi + AdBRCAm/AdDM), SGEF expression was expected to decrease compared to parental LN229 or LN229-SGEFi cells reconstituted with WT SGEF (LN229-SGEFi + AdWT). LN229 infected with AdSGEF with a mutated nuclear localization signal (LN229-SGEFi + AdNLS12m) were expected to show BRCA and SGEF interaction since whole cell lysates were used for the co-IP. MTS data showed no significant differences in metabolism between the two cell lines at all three time points (3, 5, and 7 days). Western blot analysis was successful at imaging both SGEF and BRCA1 protein bands from whole cell lysate. The CFA showed no significant difference between cell lines after being challenged with 500uM TMZ. The co-IP immunoblot showed staining for BRCA1 and SGEF for all lysate samples, including unexpected lysates such as LN229-SGEFi, LN229-SGEFi + AdBRCAm, and LN229-SGEFi + AdDM. These results suggested either an indirect protein interaction between BRCA1 and SGEF, an additional BRCA binding site not included in the consensus, or possible detection of the translocated SGEF in knockdown cells lines since shRNA cannot enter the nucleus. Further optimization of CO-IP protocol, MTS assay, and CFA will be needed to characterize the SGEF/BRCA1 interaction and its role in cell survival.

ContributorsNabaty, Natalie Lana (Author) / Douglas, Lake (Thesis director) / Loftus, Joseph C. (Committee member) / School of Life Sciences (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148049-Thumbnail Image.png
Description

Cancer rates vary between people, between cultures, and between tissue types, driven by clinically relevant distinctions in the risk factors that lead to different cancer types. Despite the importance of cancer location in human health, little is known about tissue-specific cancers in non-human animals. We can gain significant insight into

Cancer rates vary between people, between cultures, and between tissue types, driven by clinically relevant distinctions in the risk factors that lead to different cancer types. Despite the importance of cancer location in human health, little is known about tissue-specific cancers in non-human animals. We can gain significant insight into how evolutionary history has shaped mechanisms of cancer suppression by examining how life history traits impact cancer susceptibility across species. Here, we perform multi-level analysis to test how species-level life history strategies are associated with differences in neoplasia prevalence, and apply this to mammary neoplasia within mammals. We propose that the same patterns of cancer prevalence that have been reported across species will be maintained at the tissue-specific level. We used a combination of factor analysis and phylogenetic regression on 13 life history traits across 90 mammalian species to determine the correlation between a life history trait and how it relates to mammary neoplasia prevalence. The factor analysis presented ways to calculate quantifiable underlying factors that contribute to covariance of entangled life history variables. A greater risk of mammary neoplasia was found to be correlated most significantly with shorter gestation length. With this analysis, a framework is provided for how different life history modalities can influence cancer vulnerability. Additionally, statistical methods developed for this project present a framework for future comparative oncology studies and have the potential for many diverse applications.

ContributorsFox, Morgan Shane (Author) / Maley, Carlo C. (Thesis director) / Boddy, Amy (Committee member) / Compton, Zachary (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / School of Molecular Sciences (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
136542-Thumbnail Image.png
Description
Introduction: Human papillomavirus (HPV) infection is seen in up to 90% of cases of cervical cancer, the third leading cancer cause of death in women. Current HPV screening focuses on only two HPV types and covers roughly 75% of HPV-associated cervical cancers. A protein based assay to test for antibody

Introduction: Human papillomavirus (HPV) infection is seen in up to 90% of cases of cervical cancer, the third leading cancer cause of death in women. Current HPV screening focuses on only two HPV types and covers roughly 75% of HPV-associated cervical cancers. A protein based assay to test for antibody biomarkers against 98 HPV antigens from both high and low risk types could provide an inexpensive and reliable method to screen for patients at risk of developing invasive cervical cancer. Methods: 98 codon optimized, commercially produced HPV genes were cloned into the pANT7_cGST vector, amplified in a bacterial host, and purified for mammalian expression using in vitro transcription/translation (IVTT) in a luminescence-based RAPID ELISA (RELISA) assay. Monoclonal antibodies were used to determine immune cross-reactivity between phylogenetically similar antigens. Lastly, several protein characteristics were examined to determine if they correlated with protein expression. Results: All genes were successfully moved into the destination vector and 86 of the 98 genes (88%) expressed protein at an adequate level. A difference was noted in expression by gene across HPV types but no correlation was found between protein size, pI, or aliphatic index and expression. Discussion: Further testing is needed to express the remaining 12 HPV genes. Once all genes have been successfully expressed and purified at high concentrations, DNA will be printed on microscope slides to create a protein microarray. This microarray will be used to screen HPV-positive patient sera for antibody biomarkers that may be indicative of cervical cancer and precancerous cervical neoplasias.
ContributorsMeshay, Ian Matthew (Author) / Anderson, Karen (Thesis director) / Magee, Mitch (Committee member) / Katchman, Benjamin (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05
136562-Thumbnail Image.png
Description
Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related mortality in the USA and throughout the world. Two phenotypes that promote this deadly outcome are the invasive potential of NSCLC and the emergence of therapeutic resistance in this disease. There is an unmet clinical need to understand the

Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related mortality in the USA and throughout the world. Two phenotypes that promote this deadly outcome are the invasive potential of NSCLC and the emergence of therapeutic resistance in this disease. There is an unmet clinical need to understand the mechanisms that govern NSCLC cell invasion and therapeutic resistance, and to target these phenotypes towards abating the dismal five-year survival of NSCLC. The expression of the tumor necrosis factor receptor superfamily, member 12A (TNFRSF12A; Fn14) correlates with poor patient survival and invasiveness in many tumor types including NSCLC. We hypothesize that suppression of Fn14 will inhibit NSCLC cell motility and reduce cell viability. Here we demonstrate that atorvastatin calcium treatment reduces Fn14 expression in NSCLC cell lines. Prior to Fn14 protein suppression, atorvastatin calcium modulated the expression of the Fn14 modulators P-ERK1/2 and P-NF-κβ. Atorvastatin calcium treatment inhibited the migratory capacity in H1975, H2030 and H1993 cells by at least 55%. When chemotactic migration in H2030 cells was induced by the Fn14 ligand TNF-like weak inducer of apoptosis (TWEAK) treatment, atorvastatin calcium successfully negated any stimulatory effects. Inversely, treatment of NSCLC cells with cholesterol resulted in a statistically significant increase in migration. Depletion of Fn14 expression via siRNA suppressed the migratory effect of cholesterol. Finally, atorvastatin calcium treatment sensitized cells to radiation treatment, reducing cell survival. These data suggest that atorvastatin calcium may inhibit NSCLC invasiveness through a mechanism involving Fn14, and may be a novel therapeutic target in NSCLC tumors expressing Fn14.
ContributorsCornes, Victoria Elisabeth (Author) / Stout, Valerie (Thesis director) / Whitsett, Timothy (Committee member) / Carson, Vashti (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05
136199-Thumbnail Image.png
Description
Despite the 40-year war on cancer, very limited progress has been made in developing a cure for the disease. This failure has prompted the reevaluation of the causes and development of cancer. One resulting model, coined the atavistic model of cancer, posits that cancer is a default phenotype of the

Despite the 40-year war on cancer, very limited progress has been made in developing a cure for the disease. This failure has prompted the reevaluation of the causes and development of cancer. One resulting model, coined the atavistic model of cancer, posits that cancer is a default phenotype of the cells of multicellular organisms which arises when the cell is subjected to an unusual amount of stress. Since this default phenotype is similar across cell types and even organisms, it seems it must be an evolutionarily ancestral phenotype. We take a phylostratigraphical approach, but systematically add species divergence time data to estimate gene ages numerically and use these ages to investigate the ages of genes involved in cancer. We find that ancient disease-recessive cancer genes are significantly enriched for DNA repair and SOS activity, which seems to imply that a core component of cancer development is not the regulation of growth, but the regulation of mutation. Verification of this finding could drastically improve cancer treatment and prevention.
ContributorsOrr, Adam James (Author) / Davies, Paul (Thesis director) / Bussey, Kimberly (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of Life Sciences (Contributor)
Created2015-05
135873-Thumbnail Image.png
Description
Cancer remains one of the leading killers throughout the world. Death and disability due to lung cancer in particular accounts for one of the largest global economic burdens a disease presents. The burden on third-world countries is especially large due to the unusually large financial stress that comes from

Cancer remains one of the leading killers throughout the world. Death and disability due to lung cancer in particular accounts for one of the largest global economic burdens a disease presents. The burden on third-world countries is especially large due to the unusually large financial stress that comes from late tumor detection and expensive treatment options. Early detection using inexpensive techniques may relieve much of the burden throughout the world, not just in more developed countries. I examined the immune responses of lung cancer patients using immunosignatures – patterns of reactivity between host serum antibodies and random peptides. Immunosignatures reveal disease-specific patterns that are very reproducible. Immunosignaturing is a chip-based method that has the ability to display the antibody diversity from individual sera sample with low cost. Immunosignaturing is a medical diagnostic test that has many applications in current medical research and in diagnosis. From a previous clinical study, patients diagnosed for lung cancer were tested for their immunosignature vs. healthy non-cancer volunteers. The pattern of reactivity against the random peptides (the ‘immunosignature’) revealed common signals in cancer patients, absent from healthy controls. My study involved the search for common amino acid motifs in the cancer-specific peptides. My search through the hundreds of ‘hits’ revealed certain motifs that were repeated more times than expected by random chance. The amino acids that were the most conserved in each set include tryptophan, aspartic acid, glutamic acid, proline, alanine, serine, and lysine. The most overall conserved amino acid observed between each set was D - aspartic acid. The motifs were short (no more than 5-6 amino acids in a row), but the total number of motifs I identified was large enough to assure significance. I utilized Excel to organize the large peptide sequence libraries, then CLUSTALW to cluster similar-sequence peptides, then GLAM2 to find common themes in groups of peptides. In so doing, I found sequences that were also present in translated cancer expression libraries (RNA) that matched my motifs, suggesting that immunosignatures can find cancer-specific antigens that can be both diagnostic and potentially therapeutic.
ContributorsShiehzadegan, Shima (Author) / Johnston, Stephen (Thesis director) / Stafford, Phillip (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
135616-Thumbnail Image.png
Description
Background: High risk types of human papillomavirus (HPV) are known to cause cancer, including cervical (99%) and oropharyngeal cancer (70%). HPV type 16 is the most common subtype. Three antigens that are critical for integration or tumor progression are E2, E6 and E7. In this study, we developed a systematic

Background: High risk types of human papillomavirus (HPV) are known to cause cancer, including cervical (99%) and oropharyngeal cancer (70%). HPV type 16 is the most common subtype. Three antigens that are critical for integration or tumor progression are E2, E6 and E7. In this study, we developed a systematic approach to identify naturally-processed HPV16-derived HLA class I epitopes for immunotherapy development. Methods: K562 cells, which lack HLA expression, were transduced with each HPV16 antigen using lentivirus and supertransfected with HLA-A2 by nucleofection. Stable cell lines expressing each antigen were selected for and maintained throughout the investigation. In order to establish a Gateway-compatible vector for robust transient gene expression, a Gateway recombination expression cloning cassette was inserted into the commercial Lonza pMAX GFP backbone, which has been experimentally shown to display high transfection expression efficiency. GFP was cloned into the vector and plain K562 cells were transfected with the plasmid by nucleofection. Results: Expression of K562-A2 was tested at various time points by flow cytometry and A2 expression was confirmed. Protein expression was shown for the transduced K562 E7 by Western blot analysis. High transfection efficiency of the pMAX_GFP_Dest vector (up to 97% GFP+ cells) was obtained 48 hours post transfection, comparable to the commercial GFP-plasmid. Conclusion: We have established a rapid system for target viral antigen co-expression with single HLA molecules for analysis of antigen presentation. Using HPV as a model system, our goal is to identify specific antigenic peptide sequences to develop immunotherapeutic treatments for HPV-associated cancers.
ContributorsVarda, Bianca Marie (Author) / Anderson, Karen (Thesis director) / Borges, Chad (Committee member) / Krishna, Sri (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135618-Thumbnail Image.png
Description
Current studies in Multiple Myeloma suggest that patient tumors and cell lines cluster separately based on gene expression profiles. Hyperdiploid patients are also extremely underrepresented in established human myeloma cell lines (HMCLs). This suggests that the average HMCL model system does not accurately represent the average myeloma patient. To investigate

Current studies in Multiple Myeloma suggest that patient tumors and cell lines cluster separately based on gene expression profiles. Hyperdiploid patients are also extremely underrepresented in established human myeloma cell lines (HMCLs). This suggests that the average HMCL model system does not accurately represent the average myeloma patient. To investigate this question we performed a combined CNA and SNV evolutionary comparison between four myeloma tumors and their established HMCLs (JMW-1, VP-6, KAS-6/1-KAS-6/2 and KP-6). We identified copy number changes shared between the tumors and their cell lines (mean of 74 events - 59%), those unique to patients (mean of 21.25 events - 17%), and those only in the cell lines (mean of 30.75 events \u2014 24%). A relapse sample from the JMW-1 patient showed 58% similarity to the primary diagnostic tumor. These data suggest that, on the level of copy number abnormalities, HMCLs show equal levels of evolutionary divergence as that observed within patients. By exome sequencing, patient tumors were 71% similar to their representative HMCLs, with ~12.5% and ~16.5% of SNVs unique to the tumors and HMCLs respectively. The HMCLs studied appear highly representative of the patient from which they were derived, with most differences associated with an enrichment of sub-populations present in the primary tumor. Additionally, our analysis of the KP-6 aCGH data showed that the patient's hyperdiploid karyotype was maintained in its respective HMCL. This discovery confirms the establishment and validation of a novel and potentially clinically relevant hyperdiploid HMCL that could provide a major advance in our ability to understand the pathogenesis and progression of this prominent patient population.
ContributorsBenard, Brooks Avery (Author) / Keats, Jonathan (Thesis director) / Anderson, Karen (Committee member) / Jelinek, Diane (Committee member) / School of Molecular Sciences (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136857-Thumbnail Image.png
Description
Glioblastoma Multiforme (GBM) is an aggressive and deadly form of brain cancer with a median survival time of about a year with treatment. Due to the aggressive nature of these tumors and the tendency of gliomas to follow white matter tracks in the brain, each tumor mass has a unique

Glioblastoma Multiforme (GBM) is an aggressive and deadly form of brain cancer with a median survival time of about a year with treatment. Due to the aggressive nature of these tumors and the tendency of gliomas to follow white matter tracks in the brain, each tumor mass has a unique growth pattern. Consequently it is difficult for neurosurgeons to anticipate where the tumor will spread in the brain, making treatment planning difficult. Archival patient data including MRI scans depicting the progress of tumors have been helpful in developing a model to predict Glioblastoma proliferation, but limited scans per patient make the tumor growth rate difficult to determine. Furthermore, patient treatment between scan points can significantly compound the challenge of accurately predicting the tumor growth. A partnership with Barrow Neurological Institute has allowed murine studies to be conducted in order to closely observe tumor growth and potentially improve the current model to more closely resemble intermittent stages of GBM growth without treatment effects.
ContributorsSnyder, Lena Haley (Author) / Kostelich, Eric (Thesis director) / Frakes, David (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
136633-Thumbnail Image.png
Description
Breast and other solid tumors exhibit high and varying degrees of intra-tumor heterogeneity resulting in targeted therapy resistance and other challenges that make the management and treatment of these diseases rather difficult. Due to the presence of admixtures of non-neoplastic cells with polyclonal cell populations, it is difficult to define

Breast and other solid tumors exhibit high and varying degrees of intra-tumor heterogeneity resulting in targeted therapy resistance and other challenges that make the management and treatment of these diseases rather difficult. Due to the presence of admixtures of non-neoplastic cells with polyclonal cell populations, it is difficult to define cancer genomes in patient samples. By isolating tumor cells from normal cells, and enriching distinct clonal populations, clinically relevant genomic aberrations that drive disease can be identified in patients in vivo. An in-depth analysis of clonal architecture and tumor heterogeneity was performed in a stage II chemoradiation-naïve breast cancer from a sixty-five year old patient. DAPI-based DNA content measurements and DNA content-based flow sorting was used to to isolate nuclei from distinct clonal populations of diploid and aneuploid tumor cells in surgical tumor samples. We combined DNA content-based flow cytometry and ploidy analysis with high-definition array comparative genomic hybridization (aCGH) and next-generation sequencing technologies to interrogate the genomes of multiple biopsies from the breast cancer. The detailed profiles of ploidy, copy number aberrations and mutations were used to recreate and map the lineages present within the tumor. The clonal analysis revealed driver events for tumor progression (a heterozygous germline BRCA2 mutation converted to homozygosity within the tumor by a copy number event and the constitutive activation of Notch and Akt signaling pathways. The highlighted approach has broad implications in the study of tumor heterogeneity by providing a unique ultra-high resolution of polyclonal tumors that can advance effective therapies and clinical management of patients with this disease.
ContributorsLaughlin, Brady Scott (Author) / Ankeny, Casey (Thesis director) / Barrett, Michael (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor) / School for the Science of Health Care Delivery (Contributor)
Created2015-05