Matching Items (25)
Filtering by

Clear all filters

148039-Thumbnail Image.png
Description

Glioblastoma (GB) is one of the deadliest cancers and the most common form of adult primary brain tumors. SGEF (ARHGEF26) has been previously shown to be overexpressed in GB tumors, play a role in cell invasion/migration, and increase temozolomide (TMZ) resistance.[3] It was hypothesized parental LN229 cell lines with SGEF

Glioblastoma (GB) is one of the deadliest cancers and the most common form of adult primary brain tumors. SGEF (ARHGEF26) has been previously shown to be overexpressed in GB tumors, play a role in cell invasion/migration, and increase temozolomide (TMZ) resistance.[3] It was hypothesized parental LN229 cell lines with SGEF knockdown (LN229-SGEFi) will show decreased metabolism in the MTS assay and decreased colony formation in a colony formation assay compared to parental LN229 cells after challenging the two cell lines with TMZ. For WB and co-immunoprecipitation (co-IP), parental LN229 cells with endogenous SGEF and BRCA were expected to interact and stain in the BRCA1:IP WB. LN229-SGEFi cells were expected to show very little SGEF precipitated due to shRNA targeted knockdown of SGEF. In conditions with mutations in the BRCA1 binding site (LN229-SGEFi + AdBRCAm/AdDM), SGEF expression was expected to decrease compared to parental LN229 or LN229-SGEFi cells reconstituted with WT SGEF (LN229-SGEFi + AdWT). LN229 infected with AdSGEF with a mutated nuclear localization signal (LN229-SGEFi + AdNLS12m) were expected to show BRCA and SGEF interaction since whole cell lysates were used for the co-IP. MTS data showed no significant differences in metabolism between the two cell lines at all three time points (3, 5, and 7 days). Western blot analysis was successful at imaging both SGEF and BRCA1 protein bands from whole cell lysate. The CFA showed no significant difference between cell lines after being challenged with 500uM TMZ. The co-IP immunoblot showed staining for BRCA1 and SGEF for all lysate samples, including unexpected lysates such as LN229-SGEFi, LN229-SGEFi + AdBRCAm, and LN229-SGEFi + AdDM. These results suggested either an indirect protein interaction between BRCA1 and SGEF, an additional BRCA binding site not included in the consensus, or possible detection of the translocated SGEF in knockdown cells lines since shRNA cannot enter the nucleus. Further optimization of CO-IP protocol, MTS assay, and CFA will be needed to characterize the SGEF/BRCA1 interaction and its role in cell survival.

ContributorsNabaty, Natalie Lana (Author) / Douglas, Lake (Thesis director) / Loftus, Joseph C. (Committee member) / School of Life Sciences (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147886-Thumbnail Image.png
Description

The goal of this project was to design and create a genetic construct that would allow for <br/>tumor growth to be induced in the center of the wing imaginal disc of Drosophila larvae, the <br/>R85E08 domain, using a heat shock. The resulting transgene would be combined with other <br/>transgenes in

The goal of this project was to design and create a genetic construct that would allow for <br/>tumor growth to be induced in the center of the wing imaginal disc of Drosophila larvae, the <br/>R85E08 domain, using a heat shock. The resulting transgene would be combined with other <br/>transgenes in a single fly that would allow for simultaneous expression of the oncogene and, in <br/>the surrounding cells, other genes of interest. This system would help establish Drosophila as a <br/>more versatile and reliable model organism for cancer research. Furthermore, pilot studies were <br/>performed, using elements of the final proposed system, to determine if tumor growth is possible <br/>in the center of the disc, which oncogene produces the best results, and if oncogene expression <br/>induced later in development causes tumor growth. Three different candidate genes were <br/>investigated: RasV12, PvrACT, and Avli.

ContributorsSt Peter, John Daniel (Author) / Harris, Rob (Thesis director) / Varsani, Arvind (Committee member) / School of Molecular Sciences (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
136542-Thumbnail Image.png
Description
Introduction: Human papillomavirus (HPV) infection is seen in up to 90% of cases of cervical cancer, the third leading cancer cause of death in women. Current HPV screening focuses on only two HPV types and covers roughly 75% of HPV-associated cervical cancers. A protein based assay to test for antibody

Introduction: Human papillomavirus (HPV) infection is seen in up to 90% of cases of cervical cancer, the third leading cancer cause of death in women. Current HPV screening focuses on only two HPV types and covers roughly 75% of HPV-associated cervical cancers. A protein based assay to test for antibody biomarkers against 98 HPV antigens from both high and low risk types could provide an inexpensive and reliable method to screen for patients at risk of developing invasive cervical cancer. Methods: 98 codon optimized, commercially produced HPV genes were cloned into the pANT7_cGST vector, amplified in a bacterial host, and purified for mammalian expression using in vitro transcription/translation (IVTT) in a luminescence-based RAPID ELISA (RELISA) assay. Monoclonal antibodies were used to determine immune cross-reactivity between phylogenetically similar antigens. Lastly, several protein characteristics were examined to determine if they correlated with protein expression. Results: All genes were successfully moved into the destination vector and 86 of the 98 genes (88%) expressed protein at an adequate level. A difference was noted in expression by gene across HPV types but no correlation was found between protein size, pI, or aliphatic index and expression. Discussion: Further testing is needed to express the remaining 12 HPV genes. Once all genes have been successfully expressed and purified at high concentrations, DNA will be printed on microscope slides to create a protein microarray. This microarray will be used to screen HPV-positive patient sera for antibody biomarkers that may be indicative of cervical cancer and precancerous cervical neoplasias.
ContributorsMeshay, Ian Matthew (Author) / Anderson, Karen (Thesis director) / Magee, Mitch (Committee member) / Katchman, Benjamin (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05
135616-Thumbnail Image.png
Description
Background: High risk types of human papillomavirus (HPV) are known to cause cancer, including cervical (99%) and oropharyngeal cancer (70%). HPV type 16 is the most common subtype. Three antigens that are critical for integration or tumor progression are E2, E6 and E7. In this study, we developed a systematic

Background: High risk types of human papillomavirus (HPV) are known to cause cancer, including cervical (99%) and oropharyngeal cancer (70%). HPV type 16 is the most common subtype. Three antigens that are critical for integration or tumor progression are E2, E6 and E7. In this study, we developed a systematic approach to identify naturally-processed HPV16-derived HLA class I epitopes for immunotherapy development. Methods: K562 cells, which lack HLA expression, were transduced with each HPV16 antigen using lentivirus and supertransfected with HLA-A2 by nucleofection. Stable cell lines expressing each antigen were selected for and maintained throughout the investigation. In order to establish a Gateway-compatible vector for robust transient gene expression, a Gateway recombination expression cloning cassette was inserted into the commercial Lonza pMAX GFP backbone, which has been experimentally shown to display high transfection expression efficiency. GFP was cloned into the vector and plain K562 cells were transfected with the plasmid by nucleofection. Results: Expression of K562-A2 was tested at various time points by flow cytometry and A2 expression was confirmed. Protein expression was shown for the transduced K562 E7 by Western blot analysis. High transfection efficiency of the pMAX_GFP_Dest vector (up to 97% GFP+ cells) was obtained 48 hours post transfection, comparable to the commercial GFP-plasmid. Conclusion: We have established a rapid system for target viral antigen co-expression with single HLA molecules for analysis of antigen presentation. Using HPV as a model system, our goal is to identify specific antigenic peptide sequences to develop immunotherapeutic treatments for HPV-associated cancers.
ContributorsVarda, Bianca Marie (Author) / Anderson, Karen (Thesis director) / Borges, Chad (Committee member) / Krishna, Sri (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135618-Thumbnail Image.png
Description
Current studies in Multiple Myeloma suggest that patient tumors and cell lines cluster separately based on gene expression profiles. Hyperdiploid patients are also extremely underrepresented in established human myeloma cell lines (HMCLs). This suggests that the average HMCL model system does not accurately represent the average myeloma patient. To investigate

Current studies in Multiple Myeloma suggest that patient tumors and cell lines cluster separately based on gene expression profiles. Hyperdiploid patients are also extremely underrepresented in established human myeloma cell lines (HMCLs). This suggests that the average HMCL model system does not accurately represent the average myeloma patient. To investigate this question we performed a combined CNA and SNV evolutionary comparison between four myeloma tumors and their established HMCLs (JMW-1, VP-6, KAS-6/1-KAS-6/2 and KP-6). We identified copy number changes shared between the tumors and their cell lines (mean of 74 events - 59%), those unique to patients (mean of 21.25 events - 17%), and those only in the cell lines (mean of 30.75 events \u2014 24%). A relapse sample from the JMW-1 patient showed 58% similarity to the primary diagnostic tumor. These data suggest that, on the level of copy number abnormalities, HMCLs show equal levels of evolutionary divergence as that observed within patients. By exome sequencing, patient tumors were 71% similar to their representative HMCLs, with ~12.5% and ~16.5% of SNVs unique to the tumors and HMCLs respectively. The HMCLs studied appear highly representative of the patient from which they were derived, with most differences associated with an enrichment of sub-populations present in the primary tumor. Additionally, our analysis of the KP-6 aCGH data showed that the patient's hyperdiploid karyotype was maintained in its respective HMCL. This discovery confirms the establishment and validation of a novel and potentially clinically relevant hyperdiploid HMCL that could provide a major advance in our ability to understand the pathogenesis and progression of this prominent patient population.
ContributorsBenard, Brooks Avery (Author) / Keats, Jonathan (Thesis director) / Anderson, Karen (Committee member) / Jelinek, Diane (Committee member) / School of Molecular Sciences (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
137667-Thumbnail Image.png
Description
The long-term survival of patients with glioblastoma multiforme is compromised by the tumor's proclivity for local invasion into the surrounding normal brain. These invasive cells escape surgery and display resistance to chemotherapeutic- and radiation-induced apoptosis. We have previously shown that tumor necrosis factor-like weak inducer of apoptosis (TWEAK), a member

The long-term survival of patients with glioblastoma multiforme is compromised by the tumor's proclivity for local invasion into the surrounding normal brain. These invasive cells escape surgery and display resistance to chemotherapeutic- and radiation-induced apoptosis. We have previously shown that tumor necrosis factor-like weak inducer of apoptosis (TWEAK), a member of the tumor necrosis factor superfamily, can stimulate glioma cell invasion and survival via binding to the fibroblast growth factor-inducible 14 (Fn14) receptor and subsequent activation of the Rac1/NF-kappaB pathway. In addition, we have reported previously that Fn14 is expressed at high levels in migrating glioma cells in vitro and invading glioma cells in vivo. Here we demonstrate that TWEAK can act as a chemotactic factor for glioma cells, a potential process to drive cell invasion into the surrounding brain tissue. Specifically, we detected a chemotactic migration of glioma cells to the concentration gradient of TWEAK. Since Src family kinases (SFK) have been implicated in chemotaxis, we next determined whether TWEAK:Fn14 engagement activated these cytoplasmic tyrosine kinases. Our data shows that TWEAK stimulation of glioma cells results in a rapid phosphorylation of the SFK member Lyn as determined by multiplex Luminex assay and verified by immunoprecipitation. Immunodepletion of Lyn by siRNA oligonucleotides suppressed the chemoattractive effect of TWEAK on glioma cells. We hypothesize that TWEAK secretion by cells present in the glioma microenvironment induce invasion of glioma cells into the brain parenchyma. Understanding the function and signaling of the TWEAK-Fn14 ligand-receptor system may lead to development of novel therapies to therapeutically target invasive glioma cells.
ContributorsJameson, Nathan Meade (Author) / Anderson, Karen (Thesis director) / Lake, Douglas (Committee member) / Tran, Nhan (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2013-05
137656-Thumbnail Image.png
Description
Cancer is one of the leading causes of death in the world and represents a tremendous burden on patients, families and societies. S. Typhimurium strains are specifically attracted to compounds produced by cancer cells and could overcome the traditional therapeutic barrier. However, a major problem with using live attenuated Salmonella

Cancer is one of the leading causes of death in the world and represents a tremendous burden on patients, families and societies. S. Typhimurium strains are specifically attracted to compounds produced by cancer cells and could overcome the traditional therapeutic barrier. However, a major problem with using live attenuated Salmonella as anti-cancer agents is their toxicity at the dose required for therapeutic efficacy, but reducing the dose results in diminished efficacy. In this project, we explored novel means to reduce the toxicity of the recombinant attenuated Salmonella by genetically engineering those virulence factors to facilitate maximal colonization of tumor tissues and reduced fitness in normal tissues. We have constructed two sets of Salmonella strains. In the first set, each targeted gene was knocked out by deletion of the gene. In the second set, the predicted promoter region of each gene was replaced with a rhamnose-regulated promoter, which will cease the synthesis of these genes in vivo, a rhamnose-free environment.
ContributorsBenson, Lee Samuel (Author) / Kong, Wei (Thesis director) / Martin, Thomas (Committee member) / Lake, Douglas (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor) / Center for Infectious Diseases and Vaccinology (Contributor) / School of Life Sciences (Contributor)
Created2013-05
136447-Thumbnail Image.png
Description
The purpose of this thesis study was to examine whether the "war on cancer" metaphor influences cancer perception and treatment decision. A total of 249 undergraduates (152 females) from a large southwestern university participated in an online survey experiment and were either randomly assigned to the control condition (N=123) or

The purpose of this thesis study was to examine whether the "war on cancer" metaphor influences cancer perception and treatment decision. A total of 249 undergraduates (152 females) from a large southwestern university participated in an online survey experiment and were either randomly assigned to the control condition (N=123) or to the war prime condition (N=126). Participants in the control condition did not receive the metaphor manipulation while participants in the war prime condition received the subtle "war on cancer" metaphor prime. After the prime was given, participants read a scenario, answered questions related to the situation, and responded to demographic questions. The results suggested that, compared to participants in the no-prime condition, participants exposed to the war metaphor were more likely to (a) view melanoma as an acute disease, (b) choose chemotherapy over molecular tests, and (c) prefer more aggressive treatment. These findings illustrated the unintended consequences of the "war on cancer" slogan. The results were encouraging and in the predicted direction, but the effect size was small. The discussion section described possible future directions for research.
ContributorsShangraw, Ann Mariah (Author) / Kwan, Virginia (Thesis director) / Neuberg, Steven (Committee member) / Cavanaugh Toft, Carolyn (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor)
Created2015-05
132442-Thumbnail Image.png
Description
Cancer poses a significant burden on the global health system and represents a leading cause of death worldwide. For late-stage cancers, the traditional treatments of chemotherapy, radiation, and surgery are not always viable, and they can pose unnecessary health risks to the patients. New immunotherapies, such as adoptive cell transfer,

Cancer poses a significant burden on the global health system and represents a leading cause of death worldwide. For late-stage cancers, the traditional treatments of chemotherapy, radiation, and surgery are not always viable, and they can pose unnecessary health risks to the patients. New immunotherapies, such as adoptive cell transfer, are being developed and refined to treat such cancers. T cell immunotherapies in particular, where a patient’s T cell lymphocytes are isolated and amplified to be re-infused into the patient or where human cell lines are engineered to express T cell receptors for the recognition of common cancer antigens, are being expanded on because for some cancers, they could be the only option. Constructing an optimal pipeline for cloning and expression of antigen-specific TCRs has significant bearing on the efficacy of engineered cell lines for ACT. Adoptive T cell transfer, while making great strides, has to overcome a diverse T cell repertoire – cloning and expressing antigen-specific TCRs can mediate this understanding. Having identified the high frequency FluM1-specific TCR sequences in stimulated donor PBMCs, it was hypothesized that the antigen-specific TCR could be reconstructed via Gateway cloning methods and tested for expression and functionality. Establishing this pipeline would confirm an ability to properly pair and express the heterodimeric chains. In the context of downstream applications, neoantigens would be used to stimulate T cells, the α and β chains would be paired via single-cell or bulk methods, and instead of Gateway cloning, the CDR3 hypervariable regions α and β chains alone would be co-expressed using Golden Gate assembly methods.
ContributorsHirneise, Gabrielle Rachel (Author) / Anderson, Karen (Thesis director) / Mason, Hugh (Committee member) / Hariadi, Hugh (Committee member) / School of Life Sciences (Contributor, Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132454-Thumbnail Image.png
Description
Cancer is a disease that occurs in many and perhaps all multicellular organisms. Current research is looking at how different life history characteristics among species could influence cancer rates. Because somatic maintenance is an important component of a species' life history, we hypothesize the same ecological forces shaping the life

Cancer is a disease that occurs in many and perhaps all multicellular organisms. Current research is looking at how different life history characteristics among species could influence cancer rates. Because somatic maintenance is an important component of a species' life history, we hypothesize the same ecological forces shaping the life history of a species should also determine its cancer susceptibility. By looking at varying life histories, potential evolutionary trends could be used to explain differing cancer rates. Life history theory could be an important framework for understanding cancer vulnerabilities with different trade-offs between life history traits and cancer defenses. Birds have diverse life history strategies that could explain differences in cancer suppression. Peto's paradox is the observation that cancer rates do not typically increase with body size and longevity despite an increased number of cell divisions over the animal's lifetime that ought to be carcinogenic. Here we show how Peto’s paradox is negatively correlated for cancer within the clade, Aves. That is, larger, long-lived birds get more cancer than smaller, short-lived birds (p=0.0001; r2= 0.024). Sexual dimorphism in both plumage color and size differ among Aves species. We hypothesized that this could lead to a difference in cancer rates due to the amount of time and energy sexual dimorphism takes away from somatic maintenance. We tested for an association between a variety of life history traits and cancer, including reproductive potential, growth rate, incubation, mating systems, and sexual dimorphism in both color and size. We found male birds get less cancer than female birds (9.8% vs. 11.1%, p=0.0058).
ContributorsDolan, Jordyn Nicole (Author) / Maley, Carlo (Thesis director) / Harris, Valerie (Committee member) / Boddy, Amy (Committee member) / School of Molecular Sciences (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05