Matching Items (16)
Filtering by

Clear all filters

151170-Thumbnail Image.png
Description
Cancer claims hundreds of thousands of lives every year in US alone. Finding ways for early detection of cancer onset is crucial for better management and treatment of cancer. Thus, biomarkers especially protein biomarkers, being the functional units which reflect dynamic physiological changes, need to be discovered. Though important, there

Cancer claims hundreds of thousands of lives every year in US alone. Finding ways for early detection of cancer onset is crucial for better management and treatment of cancer. Thus, biomarkers especially protein biomarkers, being the functional units which reflect dynamic physiological changes, need to be discovered. Though important, there are only a few approved protein cancer biomarkers till date. To accelerate this process, fast, comprehensive and affordable assays are required which can be applied to large population studies. For this, these assays should be able to comprehensively characterize and explore the molecular diversity of nominally "single" proteins across populations. This information is usually unavailable with commonly used immunoassays such as ELISA (enzyme linked immunosorbent assay) which either ignore protein microheterogeneity, or are confounded by it. To this end, mass spectrometric immuno assays (MSIA) for three different human plasma proteins have been developed. These proteins viz. IGF-1, hemopexin and tetranectin have been found in reported literature to show correlations with many diseases along with several carcinomas. Developed assays were used to extract entire proteins from plasma samples and subsequently analyzed on mass spectrometric platforms. Matrix assisted laser desorption ionization (MALDI) and electrospray ionization (ESI) mass spectrometric techniques where used due to their availability and suitability for the analysis. This resulted in visibility of different structural forms of these proteins showing their structural micro-heterogeneity which is invisible to commonly used immunoassays. These assays are fast, comprehensive and can be applied in large sample studies to analyze proteins for biomarker discovery.
ContributorsRai, Samita (Author) / Nelson, Randall (Thesis advisor) / Hayes, Mark (Thesis advisor) / Borges, Chad (Committee member) / Ros, Alexandra (Committee member) / Arizona State University (Publisher)
Created2012
156030-Thumbnail Image.png
Description
Cancer is a heterogeneous disease with discrete oncogenic mechanisms. P53 mutation is the most common oncogenic mutation in many cancers including breast cancer. This dissertation focuses on fundamental genetic alterations enforced by p53 mutation as an indirect target. p53 mutation upregulates the mevalonate pathway genes altering cholesterol biosynthesis and prenylation.

Cancer is a heterogeneous disease with discrete oncogenic mechanisms. P53 mutation is the most common oncogenic mutation in many cancers including breast cancer. This dissertation focuses on fundamental genetic alterations enforced by p53 mutation as an indirect target. p53 mutation upregulates the mevalonate pathway genes altering cholesterol biosynthesis and prenylation. Prenylation, a lipid modification, is required for small GTPases signaling cascades. Project 1 demonstrates that prenylation inhibition can specifically target cells harboring p53 mutation resulting in reduced tumor proliferation and migration. Mutating p53 is associated with Ras and RhoA activation and statin prevents this activity by inhibiting prenylation. Ras-related pathway genes were selected from the transcriptomic analysis for evaluating correlation to statin sensitivity. A gene signature of seventeen genes and TP53 genotype (referred to as MPR signature) is generated to predict response to statins. MPR signature is validated through two datasets of drug screening in cell lines. As advancements in targeted gene modification are rising, the CRISPR-Cas9 technology has emerged as a new cancer therapeutic strategy. One of the important risk factors in gene therapy is the immune recognition of the exogenous therapeutic tool, resulting in obstruction of treatment and possibly serious health consequences. Project 2 describes a method development that can potentially improve the safety and efficacy of gene-targeting proteins. A cohort of 155 healthy individuals was screened for pre-existing B cell and T cell immune response to the S. pyogenes Cas9 protein. We detected antibodies against Cas9 in more than 10% of the healthy population and identified two immunodominant T cell epitopes of this protein. A de-immunized Cas9 that maintains the wild-type functionality was engineered by mutating the identified T cell epitopes. The gene signature and method described here have the potential to improve strategies for genome-driven tumor targeting.
ContributorsRoshdi Ferdosi, Shayesteh (Author) / Anderson, Karen S (Thesis advisor) / LaBaer, Joshua (Thesis advisor) / Woodbury, Neel (Committee member) / Borges, Chad (Committee member) / Arizona State University (Publisher)
Created2017
135584-Thumbnail Image.png
Description
Breast cancer is the leading cause of cancer-related deaths of women in the united states. Traditionally, Breast cancer is predominantly treated by a combination of surgery, chemotherapy, and radiation therapy. However, due to the significant negative side effects associated with these traditional treatments, there has been substantial efforts to develo

Breast cancer is the leading cause of cancer-related deaths of women in the united states. Traditionally, Breast cancer is predominantly treated by a combination of surgery, chemotherapy, and radiation therapy. However, due to the significant negative side effects associated with these traditional treatments, there has been substantial efforts to develop alternative therapies to treat cancer. One such alternative therapy is a peptide-based therapeutic cancer vaccine. Therapeutic cancer vaccines enhance an individual's immune response to a specific tumor. They are capable of doing this through artificial activation of tumor specific CTLs (Cytotoxic T Lymphocytes). However, in order to artificially activate tumor specific CTLs, a patient must be treated with immunogenic epitopes derived from their specific cancer type. We have identified that the tumor associated antigen, TPD52, is an ideal target for a therapeutic cancer vaccine. This designation was due to the overexpression of TPD52 in a variety of different cancer types. In order to start the development of a therapeutic cancer vaccine for TPD52-related cancers, we have devised a two-step strategy. First, we plan to create a list of potential TPD52 epitopes by using epitope binding and processing prediction tools. Second, we plan to attempt to experimentally identify MHC class I TPD52 epitopes in vitro. We identified 942 potential 9 and 10 amino acid epitopes for the HLAs A1, A2, A3, A11, A24, B07, B27, B35, B44. These epitopes were predicted by using a combination of 3 binding prediction tools and 2 processing prediction tools. From these 942 potential epitopes, we selected the top 50 epitopes ranked by a combination of binding and processing scores. Due to the promiscuity of some predicted epitopes for multiple HLAs, we ordered 38 synthetic epitopes from the list of the top 50 epitope. We also performed a frequency analysis of the TPD52 protein sequence and identified 3 high volume regions of high epitope production. After the epitope predictions were completed, we proceeded to attempt to experimentally detected presented TPD52 epitopes. First, we successful transduced parental K562 cells with TPD52. After transduction, we started the optimization process for the immunoprecipitation protocol. The optimization of the immunoprecipitation protocol proved to be more difficult than originally believed and was the main reason that we were unable to progress past the transduction of the parental cells. However, we believe that we have identified the issues and will be able to complete the experiment in the coming months.
ContributorsWilson, Eric Andrew (Author) / Anderson, Karen (Thesis director) / Borges, Chad (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
134305-Thumbnail Image.png
Description
Since Metastatic Osteosarcoma is unresponsive to most of the current standards of care currently available, and yields a survival rate of 20%, it is pertinent that novel approaches to treating it be undertaken in scientific research. Past studies in our lab have used a The Immune Blockade Therapy, utilizing α-CTLA-4

Since Metastatic Osteosarcoma is unresponsive to most of the current standards of care currently available, and yields a survival rate of 20%, it is pertinent that novel approaches to treating it be undertaken in scientific research. Past studies in our lab have used a The Immune Blockade Therapy, utilizing α-CTLA-4 and α-PD-L1 to treat mice with metastatic osteosarcoma; this resulted in 60% of mice achieving disease-free survival and protective immunity against metastatic osteosarcoma. 12 We originally wanted to see if the survival rate could be boosted by pairing the immune blockade therapy with another current, standard of care, radiation. We had found that there were certain, key features to experimental design that had to be maintained and explored further in order to raise survival rates, ultimately with the goal of reestablishing the 60% survival rate seen in mice treated with the immune blockade therapy. Our results show that mice with mature immune systems, which develop by 6-8 weeks, should be used in experiments testing an immune blockade, or other forms of immunotherapy, as they are capable of properly responding to treatment. Treatment as early as one day after should be maintained in future experiments looking at the immune blockade therapy for the treatment of metastatic osteosarcoma in mice. The immune blockade therapy, using α-PD-L1 and α-CTLA-4, seems to work synergistically with radiation, a current standard of care. The combination of these therapies could potentially boost the 60% survival rate, as previously seen in mice treated with α-PD-L1 and α-CTLA-4, to a higher percent by means of reducing tumor burden and prolonging length of life in metastatic osteosarcoma.
ContributorsLabban, Nicole (Author) / Blattman, Joseph (Thesis director) / Appel, Nicole (Committee member) / Barrett, The Honors College (Contributor)
Created2017-05
133841-Thumbnail Image.png
Description
Glioblastoma multiforme (GBM) is an aggressive malignant brain tumor with a median prognosis of 14 months. Human hairless protein (HR) is a 130 kDa nuclear transcription factor that plays a critical role in skin and hair function but was found to be highly expressed in neural tissue as well. The

Glioblastoma multiforme (GBM) is an aggressive malignant brain tumor with a median prognosis of 14 months. Human hairless protein (HR) is a 130 kDa nuclear transcription factor that plays a critical role in skin and hair function but was found to be highly expressed in neural tissue as well. The expression of HR in GBM tumor cells is significantly decreased compared to the normal brain tissue and low levels of HR expression is associated with shortened patient survival. We have recently reported that HR is a DNA binding phosphoprotein, which binds to p53 protein and p53 responsive element (p53RE) in vitro and in intact cells. We hypothesized that HR can regulate p53 downstream target genes, and consequently affects cellular function and activity. To test the hypothesis, we overexpressed HR in normal human embryonic kidney HEK293 and GBM U87MG cell lines and characterized these cells by analyzing p53 target gene expression, viability, cell-cycle arrest, and apoptosis. The results revealed that the overexpressed HR not only regulates p53-mediated target gene expression, but also significantly inhibit cell viability, induced early apoptosis, and G2/M cell cycle arrest in U87MG cells, compared to mock groups. Translating the knowledge gained from this research on the connections between HR and GBM could aid in identifying novel therapies to circumvent GBM progression or improve clinical outcome.
ContributorsBrook, Lemlem Addis (Author) / Blattman, Joseph (Thesis director) / Hsieh, Jui-Cheng (Committee member) / Goldstein, Elliott (Committee member) / Harrington Bioengineering Program (Contributor) / School of Social Transformation (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
137336-Thumbnail Image.png
Description
Mr. Green has stage 4 prostate cancer which has spread to the bones and liver and has become resistant to radiation and standard chemotherapy treatment. After 3 rounds of chemotherapy, his primary oncologist recommends that he participate in a clinical trial. He went to Dr. Red at the Saguaro Clinic

Mr. Green has stage 4 prostate cancer which has spread to the bones and liver and has become resistant to radiation and standard chemotherapy treatment. After 3 rounds of chemotherapy, his primary oncologist recommends that he participate in a clinical trial. He went to Dr. Red at the Saguaro Clinic after reading on the internet about a new Phase 1 clinical trial that the clinic is hosting, which is designed to target a specific receptor called AB-111 that may be present in malignant prostate, cervical, ovarian, and breast cells. After signing consent and completing the blood screens in the morning at the clinic, Mr. Green is told his liver enzymes are too high and the ranges specified in the protocol prohibit him from enrolling. Mr. Green is noticeably affected and distressed at this news, and Dr. Red recommends end-of-life care. Behind the scenes, this event is noted on official medical documents and trial study rosters as a "screen fail." This narrative, while fictional, is realistic because similar events occur in cancer clinical trial sites on a regular basis. I look at the inner "world" and mental journey of possible clinical trial candidates as they seek out information about clinical trials and gain understanding of their function \u2014 specifically in the context of Phase 1 cancer clinical trials. To whom is the language of the term "screen failure" useful? How does excluding individuals from clinical trials protect their health and does the integrity of the trial data supersede the person's curative goals? What is the message that cancer patients (potential research subjects) receive regarding clinical trials from sources outside their oncologists?
ContributorsMcKane, Alexandra (Author) / Maienschein, Jane (Thesis director) / Ellison, Karin (Committee member) / Foy, Joseph (Committee member) / Barrett, The Honors College (Contributor)
Created2013-12
Description
The interaction between England and Scotland is complicated and continually changing. Scottish writer Sir Walter Scott examines this long-standing relationship through his various writings. Scott conveys a presence that is both acutely aware of the damages enacted upon Scotland by various English political efforts, and sensitive to the delicate relationshi

The interaction between England and Scotland is complicated and continually changing. Scottish writer Sir Walter Scott examines this long-standing relationship through his various writings. Scott conveys a presence that is both acutely aware of the damages enacted upon Scotland by various English political efforts, and sensitive to the delicate relationship that the two regions had begun to form during his lifetime. Through a critical analysis of Scott's novel, Rob Roy, one can see the various strategies Scott used to balance the need to address prior controversies within the relationship, and the petition to move beyond the prior conflict and develop a mutual understanding of each culture. Through this, Scott is able to regenerate a sense of Scottish nationalism for his people, and encourage improved relations within the British Isles.
ContributorsChotena, Chelsea (Author) / Facinelli, Diane (Thesis director) / Foy, Joseph (Committee member) / White, Julianne (Committee member) / Barrett, The Honors College (Contributor)
Created2013-05
135062-Thumbnail Image.png
Description
The p53 gene functions as a tumor suppressor that inhibits proliferation, regulates apoptosis, DNA repair, and normal cell cycle arrest. Mutation of the p53 gene is linked to be prevalent in 50% of all human cancers. In this paper, we are exploring triple negative breast cancer and the effects of

The p53 gene functions as a tumor suppressor that inhibits proliferation, regulates apoptosis, DNA repair, and normal cell cycle arrest. Mutation of the p53 gene is linked to be prevalent in 50% of all human cancers. In this paper, we are exploring triple negative breast cancer and the effects of simvastatin on tumor growth and survival. Simvastatin is a drug that is primarily used to treat high cholesterol and heart disease. Simvastatin is unique because it is able to inhibit protein prenylation through regulation of the mevalonate pathway. This makes it a potential targeted drug for therapy against p53 mutant cancer. The mechanism behind this is hypothesized to be correlated to aberrant activation of the Ras pathway. The Ras subfamily functions to transcriptionally regulate cell growth and survival, and will therefore allow for a tumor to thrive if the pathway is continually and abnormally activated. The Ras protein has to be prenylated in order for activation of this pathway to occur, making statin drug treatment a viable option as a cancer treatment. This is because it acts as a regulator of the mevalonate pathway which is upstream of protein prenylation. It is thus vital to understand these pathways at both the gene and protein level in different p53 mutants to further understand if simvastatin is indeed a drug with anti-cancer properties and can be used to target cancers with p53 mutation. The goal of this project is to study the biochemistry behind the mutation of p53's sensitivity to statin. With this information we can create a possible signature for those who could benefit from Simvastatin drug treatment as a possible targeted treatment for p53 mutant cancers.
ContributorsGrewal, Harneet (Co-author) / Loo, Yi Jia Valerie (Co-author) / Anderson, Karen (Thesis director) / Blattman, Joseph (Committee member) / Ferdosi, Shayesteh (Committee member) / Department of Psychology (Contributor) / School of Life Sciences (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
134876-Thumbnail Image.png
Description
PD-L1 blockade has shown recent success in cancer therapy and cancer vaccine regimens. One approach for anti-PD-L1 antibodies has been their application as adjuvants for cancer vaccines. Given the disadvantages of such antibodies, including long half-life and adverse events related to their use, a novel strategy using synbodies in place

PD-L1 blockade has shown recent success in cancer therapy and cancer vaccine regimens. One approach for anti-PD-L1 antibodies has been their application as adjuvants for cancer vaccines. Given the disadvantages of such antibodies, including long half-life and adverse events related to their use, a novel strategy using synbodies in place of antibodies can be tested. Synbodies offer a variety of advantages, including shorter half-life, smaller size, and cheaper cost. Peptides that could bind PD-L1 were identified via peptide arrays and used to construct synbodies. These synbodies were tested with inhibition ELISA assays, SPR, and pull down assays. Additional flow cytometry analysis was done to determine the binding specificity of the synbodies to PD-L1 and the ability of those synbodies to inhibit the PD-L1/PD-1 interaction. Although analysis of permeabilized cells expressing PD-L1 indicated that the synbodies could successfully bind PD-L1, those results were not replicated in non-permeabilized cells. Further assays suggested that the binding of the synbodies was non-specific. Other tests were done to see if the synbodies could inhibit the PD-1/PD-L1 interaction. This assay did not yield any conclusive results and further experimentation is needed to determine the efficacy of the synbodies in inhibiting this interaction.
ContributorsMujahed, Tala (Author) / Johnston, Stephen (Thesis director) / Blattman, Joseph (Committee member) / Diehnelt, Chris (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
135616-Thumbnail Image.png
Description
Background: High risk types of human papillomavirus (HPV) are known to cause cancer, including cervical (99%) and oropharyngeal cancer (70%). HPV type 16 is the most common subtype. Three antigens that are critical for integration or tumor progression are E2, E6 and E7. In this study, we developed a systematic

Background: High risk types of human papillomavirus (HPV) are known to cause cancer, including cervical (99%) and oropharyngeal cancer (70%). HPV type 16 is the most common subtype. Three antigens that are critical for integration or tumor progression are E2, E6 and E7. In this study, we developed a systematic approach to identify naturally-processed HPV16-derived HLA class I epitopes for immunotherapy development. Methods: K562 cells, which lack HLA expression, were transduced with each HPV16 antigen using lentivirus and supertransfected with HLA-A2 by nucleofection. Stable cell lines expressing each antigen were selected for and maintained throughout the investigation. In order to establish a Gateway-compatible vector for robust transient gene expression, a Gateway recombination expression cloning cassette was inserted into the commercial Lonza pMAX GFP backbone, which has been experimentally shown to display high transfection expression efficiency. GFP was cloned into the vector and plain K562 cells were transfected with the plasmid by nucleofection. Results: Expression of K562-A2 was tested at various time points by flow cytometry and A2 expression was confirmed. Protein expression was shown for the transduced K562 E7 by Western blot analysis. High transfection efficiency of the pMAX_GFP_Dest vector (up to 97% GFP+ cells) was obtained 48 hours post transfection, comparable to the commercial GFP-plasmid. Conclusion: We have established a rapid system for target viral antigen co-expression with single HLA molecules for analysis of antigen presentation. Using HPV as a model system, our goal is to identify specific antigenic peptide sequences to develop immunotherapeutic treatments for HPV-associated cancers.
ContributorsVarda, Bianca Marie (Author) / Anderson, Karen (Thesis director) / Borges, Chad (Committee member) / Krishna, Sri (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05