Matching Items (11)
Filtering by

Clear all filters

135841-Thumbnail Image.png
Description
Over the past few years, the issue of childhood trauma in the United States has become significant. A growing number of children are experiencing abuse, neglect, or some other form of maltreatment each year. Considering the stressful home lives of maltreated children, the one sure sanctuary is school. However, this

Over the past few years, the issue of childhood trauma in the United States has become significant. A growing number of children are experiencing abuse, neglect, or some other form of maltreatment each year. Considering the stressful home lives of maltreated children, the one sure sanctuary is school. However, this idea requires teachers to be actively involved in identifying and caring for the children who need it most. Traumatic childhood experiences leave lasting scars on its victims, so it is helpful if teachers learn how to identify and support children who have lived through them. It is unfortunate that teachers will most likely encounter children throughout their career who have experienced horrendous things, but it is a reality. With this being said, teachers need to develop an understanding of what traumatized children live with, and learn how to address these issues with skilled sensitivity. Schools are not just a place where children learn how to read and write; they build the foundation for a successful life. This project was designed to provide teachers with a necessary resource for helping children who have suffered traumatic experiences. The methodology of this project began with interviews with organizations specializing in working with traumatized children such as Arizonans for Children, Free Arts for Abused Children, The Sojourner Center, and UMOM. The next step was a review of the current literature on the subject of childhood trauma. The findings have all been compiled into one, convenient document for teacher use and distribution. Upon completion of this document, an interactive video presentation will be made available through an online education website, so that distribution will be made simpler. Hopefully, teachers will share the information with people in their networks and create a chain reaction. The goal is to make it available to as many teachers as possible, so that more children will receive the support they need.
ContributorsHanrahan, Katelyn Ann (Author) / Dahlstrom, Margo (Thesis director) / Kelley, Michael (Committee member) / Division of Teacher Preparation (Contributor) / Sanford School of Social and Family Dynamics (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
Description
Each family approaches a cancer diagnosis differently. While some families pursue traditional treatments to the fullest extent, others attempt to refuse chemotherapy, often in favor of alternative medicines. When the patient is a minor, his or her parents have the authority to make medical decisions on their behalf, and this

Each family approaches a cancer diagnosis differently. While some families pursue traditional treatments to the fullest extent, others attempt to refuse chemotherapy, often in favor of alternative medicines. When the patient is a minor, his or her parents have the authority to make medical decisions on their behalf, and this authority is constitutionally protected and socially upheld. However, when the decision to forgo chemotherapy does not comply with minimum standard of care and puts the minor's life in danger, legal action can and has been taken to force the minor to undergo chemotherapy. Legal precedent and biomedical ethics principles guide the decision-making process of the physicians and judges involved, although there is no official framework by which to prioritize these principles. Neglect and abuse procedures, as well as capacity determinations, mature minor doctrines, and religious convictions, add complexity to each forced chemotherapy case. These complexities were explored through the context of four case studies: Cassandra Callendar, who was not granted mature minor status and was forced into treatment by the Connecticut Supreme court; Starchild Abraham Cherrix, who was allowed to pursue the alternative Hoxsey therapy with the consent of his parents and the local court; Dennis Lindberg, a 14-year-old Jehovah's Witness who was permitted to refuse blood transfusions under the Mature Minor Doctrine; and Daniel Hauser, a developmentally delayed teen who was forced to undergo therapy against his parents' religious convictions. In the analysis and comprehensive comparison of these cases, it was concluded that an attempt to establish a protocol by which to determine the ethics of forcing chemotherapy, while well-intended, would ultimately be ineffective and extremely complex. Thus, each forced chemotherapy case must be evaluated on an individual basis.
ContributorsNelson, Sarah Gabrielle (Author) / Hendrickson, Kirstin (Thesis director) / Lynch, John (Committee member) / Jaramillo, Andres (Committee member) / School of Molecular Sciences (Contributor) / Sanford School of Social and Family Dynamics (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134119-Thumbnail Image.png
Description
Chemotherapy refers to the use of chemical agents to inhibit or stop the growth of rapidly dividing cancer cells. There are many side effects of systemic chemotherapy, which are caused because the drug not only kills cancer cells but healthy cells as well (American Cancer Society, 2017). Common side effects

Chemotherapy refers to the use of chemical agents to inhibit or stop the growth of rapidly dividing cancer cells. There are many side effects of systemic chemotherapy, which are caused because the drug not only kills cancer cells but healthy cells as well (American Cancer Society, 2017). Common side effects include fatigue, hair loss, bruising/ bleeding, infection, anemia, nausea and vomiting, appetite changes, constipation, diarrhea, oral sores, nerve and muscle pain, dry skin and color change, kidney dysfunction, weight loss, cognitive difficulties, mood changes, sexual dysfunction, and fertility problems (American Cancer Society, 2017). Research shows that complementary and alternative medicine (CAM) may help relieve some of the side effects of chemotherapy. Examples of CAM include herbal medicine, dietary supplements, acupuncture, yoga, Tai Chi, massage, electromagnetic therapy, meditation, biofeedback, music, dance, and guided imagery (Johns Hopkins Medicine, 2017). The aim of this creative project was to design a third-party website to provide information to patients undergoing chemotherapy and their family members regarding the use of CAM for the treatment of chemotherapy-induced side effects. Rationale for this project stemmed from a preliminary research step. We analyzed and coded for presence or absence of CAM-specific information on the websites of 20 National Cancer Institute-designated comprehensive cancer centers across the United States. Fifty percent of websites were double-coded. Inter-rater reliabilities (kappa values) for coding of the presence or absence of specific CAM therapies ranged from 0.38 for acupuncture to 1.00 for exercise and yoga, expressive arts, and herbs (mean kappa = 0.75). Fourteen of the 20 websites mentioned meditation or mindfulness; 13 mentioned nutrition; 12 mentioned acupuncture; 11 mentioned exercise or yoga; 11 mentioned massage; 8 mentioned expressive arts; and 3 mentioned herbs. Frequencies for presence of either a description of the specific CAM therapy or an explanation of how the therapy works were lower. We then conducted a literature review using PUBMED to find peer-reviewed research on the efficacy of the previously described seven CAM therapies. The literature search focused on systematic reviews and meta-analyses published within the past 10 years. Based on the literature obtained, we created summaries of the scientific evidence for each CAM therapy. This information is now provided on our third-party website in tabular form with summative statements. The website describes in lay language: chemotherapy, chemotherapy side effects, CAM, seven specific CAM therapies, and evidence for the efficacy or lack thereof of each. Per the American Nurses Association (2015), it is our responsibility to advocate for our patients through education and holistic treatment. The role of the nurse is to educate the patient about treatment options; however, it is not within the nurse's scope of practice to prescribe a treatment. As such, this website should not be viewed as a prescription for CAM therapies, but instead as a user-friendly and easily accessible resource for informed decision-making regarding the adjunctive use of CAM therapies.
Created2017-12
134826-Thumbnail Image.png
Description
As advanced as current cancer therapeutics are, there are still challenges that need to be addressed. One of them is the non-specific killing of normal cells in addition to cancerous cells. Ideal cancer therapeutics should be targeted specifically toward tumor cells. Due to the robust self-assembly and versatile addressability of

As advanced as current cancer therapeutics are, there are still challenges that need to be addressed. One of them is the non-specific killing of normal cells in addition to cancerous cells. Ideal cancer therapeutics should be targeted specifically toward tumor cells. Due to the robust self-assembly and versatile addressability of DNA-nanostructures, a DNA tetrahedron nanostructure was explored as a drug carrier. The nanostructure can be decorated with various molecules to either increase immunogenicity, toxicity, or affinity to a specific cell type. The efficiency of the specific binding and internalization of the chosen molecules was measured via flow cytometry. Using a murine B cell lymphoma as the model system, several targeting molecules have been evaluated for their specific binding and induced internalization of DNA nanostructures, including an anti-Igκ antibody, an idiotype-binding peptide, and a g-quadruplex nucleolin specific aptamer. It was found that adding the anti-Igκ antibody appeared to provide increased binding and facilitated cellular internalization. Also, it was found that the presence of CpG appeared to aid in the binding of nanostructures decorated with other molecules, as compared to nanostructures without CpG. The g-quadruplex aptamer thought to specifically bind cancer cells that overexpress nucleolin was tested and found to have better binding to cells when linked to the nanostructure than when alone. The drug doxorubicin was used to load the DNA-nanostructure and attempt to inhibit cancer cell growth. The DNA-nanostructure has the benefit of being self-assembled and customizable, and it has been shown to bind to and internalize into a cancer cell line. The next steps are to test the toxicity of the nanostructure as well as its specificity for cancerous cells compared to noncancerous cells. Furthermore, once those tests are completed the structure’s drug delivery capacity will be tested in tumor bearing mice. The DNA-nanostructure exhibits potential as a cancer specific therapeutic.
ContributorsGomez, Amber Marie (Author) / Chang, Yung (Thesis director) / Anderson, Karen (Committee member) / Liu, Xiaowei (Committee member) / Sanford School of Social and Family Dynamics (Contributor) / School of Molecular Sciences (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
135041-Thumbnail Image.png
Description
The advent of big data analytics tools and frameworks has allowed for a plethora of new approaches to research and analysis, making data sets that were previously too large or complex more accessible and providing methods to collect, store, and investigate non-traditional data. These tools are starting to be applied

The advent of big data analytics tools and frameworks has allowed for a plethora of new approaches to research and analysis, making data sets that were previously too large or complex more accessible and providing methods to collect, store, and investigate non-traditional data. These tools are starting to be applied in more creative ways, and are being used to improve upon traditional computation methods through distributed computing. Statistical analysis of expression quantitative trait loci (eQTL) data has classically been performed using the open source tool PLINK - which runs on high performance computing (HPC) systems. However, progress has been made in running the statistical analysis in the ecosystem of the big data framework Hadoop, resulting in decreased run time, reduced storage footprint, reduced job micromanagement and increased data accessibility. Now that the data can be more readily manipulated, analyzed and accessed, there are opportunities to use the modularity and power of Hadoop to further process the data. This project focuses on adding a component to the data pipeline that will perform graph analysis on the data. This will provide more insight into the relation between various genetic differences in individuals with breast cancer, and the resulting variation - if any - in gene expression. Further, the investigation will look to see if there is anything to be garnered from a perspective shift; applying tools used in classical networking contexts (such as the Internet) to genetically derived networks.
ContributorsRandall, Jacob Christopher (Author) / Buetow, Kenneth (Thesis director) / Meuth, Ryan (Committee member) / Almalih, Sara (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
135515-Thumbnail Image.png
Description
Hepatocellular carcinoma (HCC) is the most common type of liver cancer and has been shown to have genetic factors that contribute to cancer susceptibility. These genetic factors can be studied using Genome-Wide association studies (GWAS), which allow for the assessment of associations between specific biologic markers. Through GWAS, associations can

Hepatocellular carcinoma (HCC) is the most common type of liver cancer and has been shown to have genetic factors that contribute to cancer susceptibility. These genetic factors can be studied using Genome-Wide association studies (GWAS), which allow for the assessment of associations between specific biologic markers. Through GWAS, associations can be analyzed to identify genetic components that contribute to the onset of HCC. This study uses an extended version of Pathways of Distinction analysis (PoDA) to identify the subset of SNPs within the Antigen Presentation and Processing Pathway that distinguish cases from controls. Further analysis was performed to explore SNP-SNP association differences between HCC cases and controls using R-squared values and p-values. Three SNPs show significant inter-SNP associations in both HCC cases and controls. Additionally, 4 SNPs showed significant SNP-SNP associations exclusively in the control data set, possibly suggesting that control pathways have a greater degree of genetic regulation and robustness that is lost in carcinogenesis. This result suggests that these SNP associations may contribute to HCC susceptibility.
ContributorsAghili, Ardesher Joshua (Author) / Buetow, Kenneth (Thesis director) / Wilson Sayres, Melissa (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
171931-Thumbnail Image.png
Description
While only the sixth most common cancer globally, liver cancer is the third most deadly. Despite the importance of accurate diagnosis and effective treatment, standard diagnostic tests for most solid organ neoplasms are not required for the most common type of liver cancer, Hepatocellular Carcinoma (HCC). In addition, major discrepancies

While only the sixth most common cancer globally, liver cancer is the third most deadly. Despite the importance of accurate diagnosis and effective treatment, standard diagnostic tests for most solid organ neoplasms are not required for the most common type of liver cancer, Hepatocellular Carcinoma (HCC). In addition, major discrepancies in the practices currently in place limits the ability to develop more precise oncological treatment and prognosis. This study aimed to identify biomarkers, with potential to more accurately diagnose how far cancer has advanced within a patient and determine prognosis. It is the hope that pathways provided by this study form the basis for future research into more standardized practices and potential treatment based on specific affected biological processes. The PathOlogist tool was utilized to calculate activity metrics for 1,324 biological pathways in 374 The Cancer Genome Atlas (TCGA) hepatocellular carcinoma donors. Further statistical analysis was done on two datasets, formed to identify grade or stage at time of diagnosis for the activity levels calculated by PathOlogist. The datasets were evaluated individually. Based on the variance and normality of each pathway’s activity levels in the respective data sets analysis of variance, Tukey-Kramer, Kruskal-Wallis, and Mann-Whitney-Wilcox tests were performed, when appropriate, to determine any statistically significant differences in pathway activity levels. Pathways were identified in both stage and grade data analyses that show significant differences in activity levels across designation. While some overlap is seen, there was a significant number of pathways unique to either stage or grade. These pathways are known to affect the cell cycle, cellular transport, disease, immune system, and metabolism regulation. The biological pathways named by this research depict prospective biomarkers for progression of hepatocellular carcinoma per subdivision within both stage and grade. These findings may be instrumental to new methods of early and more accurate diagnosis. The distinct differences in identified pathways in grade and stage illustrate the need for these new methods to not only look at stage but also grade when determining prognosis. Furthermore, the pathways identified herein have potential to aid in the development of targeted treatment based on the affected biological processes.
ContributorsGarrison, Alyssa Cameron (Author) / Buetow, Kenneth (Thesis advisor) / Hinde, Katie (Committee member) / Wilson, Melissa (Committee member) / Arizona State University (Publisher)
Created2022
161497-Thumbnail Image.png
Description
The Pathways of Distinction Analysis (PoDA) program calculates relationships between a given group of genes contained within a pathway, and a disease state. It was used here to investigate liver cancer, and to explore how genetic variability may contribute to the different rates of development of the disease in males

The Pathways of Distinction Analysis (PoDA) program calculates relationships between a given group of genes contained within a pathway, and a disease state. It was used here to investigate liver cancer, and to explore how genetic variability may contribute to the different rates of development of the disease in males and females. The goal of the study was to identify germline variation that differs by sex in hepatocellular carcinoma. Using the program, multiple pathways and genes were identified to have significant differences in their relationship to liver cancer in males and females. In animal studies, the genes which were identified using the PoDA analysis have been shown to impact liver cancer, often with different results for males and females. While these genes are often the focus in animal models, they are absent from current Genome Wide Association Studies (GWAS) catalogs for humans. By working to bridge the results of animal studies and human studies, the results help to identify the causes of liver cancer, and more specifically, the reason the disease affects males at much higher rates. The differences in pathways identified to be significant for the two sexes indicate the germline variance may play sex-specific roles in the development of hepatocellular carcinoma. Additionally, these results reinforce the capacity of the PoDA analysis to identify genes that may be missed by more traditional GWAS methods. This study lays the groundwork for further investigations into the identified genes and pathways, and how they behave differently within males and females.
ContributorsOlson, Erik Jon (Author) / Buetow, Kenneth (Thesis advisor) / Wilson, Melissa (Committee member) / Cartwright, Reed (Committee member) / Arizona State University (Publisher)
Created2021
132350-Thumbnail Image.png
Description
Cancer is a disease in which abnormal cells divide uncontrollably and destroy body tissue, and currently plagues today’s world. Carcinomas are cancers derived from epithelial cells and include breast and prostate cancer. Breast cancer is a type of carcinoma that forms in breast tissue cells. The tumor cells can be

Cancer is a disease in which abnormal cells divide uncontrollably and destroy body tissue, and currently plagues today’s world. Carcinomas are cancers derived from epithelial cells and include breast and prostate cancer. Breast cancer is a type of carcinoma that forms in breast tissue cells. The tumor cells can be further categorized after testing the cells for the presence of certain molecules. Hormone receptor positive breast cancer includes the tumor cells with receptors that respond to the steroid hormones, estrogen and progesterone, or the peptide hormone, HER2. These forms of cancer respond well to chemotherapy and endocrine therapy. On the other hand, triple negative breast cancer (TNBC) is characterized by the lack of hormone receptor expression and tends to have a worse prognosis in women. Prostate cancer forms in the cells of the prostate gland and has been attributed to mutations in androgen receptor ligand specificity. In a subset of triple negative breast cancer, genetic expression profiling has found a luminal androgen receptor that is dependent on androgen signaling. TNBC has also been found to respond well to enzalutamide, a an androgen receptor inhibitor. As the gene of the androgen receptor, AR, is located on the X chromosome and expressed in a variety of tissues, the responsiveness of TNBC to androgen receptor inhibition could be due to the differential usage of isoforms - different gene mRNA transcripts that produce different proteins. Thus, this study analyzed differential gene expression and differential isoform usage between TNBC cancers – that do and do not express the androgen receptor – and prostate cancer in order to better understand the underlying mechanism behind the effectiveness of androgen receptor inhibition in TNBC. Through the analysis of differential gene expression between the TNBC AR+ and AR- conditions, it was found that seven genes are significantly differentially expressed between the two types of tissues. Genes of significance are AR and EN1, which was found to be a potential prognostic marker in a subtype of TNBC. While some genes are differentially expressed between the TNBC AR+ and AR- tissues, the differences in isoform expression between the two tissues do not reflect the difference in gene expression. We discovered 11 genes that exhibited significant isoform switching between AR+ and AR- TNBC and have been found to contribute to cancer characteristics. The genes CLIC1 and RGS5 have been found to help the rapid, uncontrolled growth of cancer cells. HSD11B2, IRAK1, and COL1Al have been found to contribute to general cancer characteristics and metastasis in breast cancer. PSMA7 has been found to play a role in androgen receptor activation. Finally, SIDT1 and GLYATL1 are both associated with breast and prostate cancers. Overall, through the analysis of differential isoform usage between AR+ and AR- samples, we uncovered differences that were not detected by a gene level differential expression analysis. Thus, future work will focus on analyzing differential gene and isoform expression across all types of breast cancer and prostate cancer to better understand the responsiveness of TNBC to androgen receptor inhibition.
ContributorsDeshpande, Anagha J (Author) / Wilson-Sayres, Melissa (Thesis director) / Buetow, Kenneth (Committee member) / Natri, Heini (Committee member) / School of Human Evolution & Social Change (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
131069-Thumbnail Image.png
Description
Pathway analysis helps researchers gain insight into the biology behind gene expression-based data. By applying this data to known biological pathways, we can learn about mutations or other changes in cellular function, such as those seen in cancer. There are many tools that can be used to analyze pathways; however,

Pathway analysis helps researchers gain insight into the biology behind gene expression-based data. By applying this data to known biological pathways, we can learn about mutations or other changes in cellular function, such as those seen in cancer. There are many tools that can be used to analyze pathways; however, it can be difficult to find and learn about the which tool is optimal for use in a certain experiment. This thesis aims to comprehensively review four tools, Cytoscape, PaxtoolsR, PathOlogist, and Reactome, and their role in pathway analysis. This is done by applying a known microarray data set to each tool and testing their different functions. The functions of these programs will then be analyzed to determine their roles in learning about biology and assisting new researchers with their experiments. It was found that each tools holds a very unique and important role in pathway analysis. Visualization pathways have the role of exploring individual pathways and interpreting genomic results. Quantification pathways use statistical tests to determine pathway significance. Together one can find pathways of interest and then explore areas of interest.
ContributorsRehling, Thomas Evan (Author) / Buetow, Kenneth (Thesis director) / Wilson, Melissa (Committee member) / School of Life Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05